![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1739425368-XoKEkbwXIWxhuhunrxcytUM3XLt8MEaR-0-60ea2fb254a94893dc88670a46e1995e)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1739425368-5dbwbmyJ4TC7spGg0rz91QDNmcTlzjHy-0-afd748a9c626aaa9e8b96cbfe2fa5dd1)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1739425368-PfvBedNl5hFtDiJGu90mCfnDkvljsaMw-0-7486f9132bddd8ff8faa82de706726f3)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1739425368-0EB0XO8QTt2d2tZVcd9b2DlJfs38ikRE-0-c02c6ac3efd994b5ddefa686fae37dd4)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1739425368-VRs8AwVvYLsEXCRXkl69BAVqieZCUaQl-0-db58378cd35f256dd95a22f72b265f1e)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1739425368-aENCJ9dobXFnd8kZdpUiHKAk70nl1ceZ-0-0ae6ade79db5e211545d36e61ecdf389)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1739425368-gxROgOcCkMMgOJcFt5txpVMmlnADrTC3-0-90aab24ce670ec687d0586ebd8a4277f)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1739425368-81jeF5hMLDKxeNJtFjObtsGS3P3UizGK-0-fda6557773865bb7d11aa93bb2656fb2)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1739425368-Djr8BfnuwOowetYJbNm1PfOBmDF7krzA-0-9dfcb7ce146b52f2cef96c0d10ce5bc1)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1739425368-hXDqe3LSlc26z7IoiWzRkzgHsXQYk47j-0-b2c15559e642a4473311fe3de221c87b)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1739425368-lFoNill0CwN9Xc1RC6gWJsAmQHYMBTq1-0-770ca16a3d889b43706867d9e9445f00)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1739425368-2K8pOcqQ8ES0etcqMtkGL3DZtLSvPDro-0-05cb03b4865372268e4253b0651d3053)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1739425368-vN6RBtvBqpuywERYHdO98T9zNTiKaVYi-0-83843715d145b390aab6bb182a85ec5f)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1739425368-u0ZbVnZsJogEgoPcnOOHfrnd8ibeqqk9-0-7dfa6b6cd6b9e7b64a36872ec08378d8)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1739425368-smBGKXWIpGKOypfhJW16aE85HuLAPoxK-0-d2fbfd1460caaed3acdd5ecd35358843)