2.2.2 矩阵的构造
矩阵的构造方式有两种:一种与元胞数组相似,可以对变量直接进行赋值;另一种是使用MATLAB中提供的构造特殊矩阵的函数,如表2-12所示。
表2-12 构造特殊矩阵的函数
续表
1.建立简单矩阵
简单矩阵的建立采用矩阵构造符号——方括号“[]”,将矩阵元素置于方括号内,同行元素之间用空格或逗号隔开,行与行之间用分号“;”隔开,格式如下:
例2-31:简单矩阵构造示例。
分别构造一个二维矩阵、一个行向量、一个列向量。在命令行窗口中依次输入:
程序运行过程中的输出如下:
2.建立特殊矩阵
特殊矩阵是指非零元素或零元素的分布有一定规律的矩阵。常见的特殊矩阵有对称矩阵、三角矩阵和对角矩阵等。
例2-32:特殊矩阵构造示例。
在命令行窗口中输入:
输出结果:
继续在命令行窗口中输入:
输出结果:
3.向量、标量和空矩阵
通常情况下,矩阵包含m行n列,即m×n。当m和n取一些特殊值时,得到的矩阵具有一些特殊的性质。
(1)向量。
当m=1或n=1时,即1×n或m×1,建立的矩阵称为向量。例如,在命令行窗口中输入:
得到结果:
(2)标量。
当m=n=1时,建立的矩阵称为标量。任意以1×1的矩阵形式表示的单个实数、复数都是标量。
例2-33:在MATLAB中,标量有两种表示方法。
在命令行窗口中依次输入:
得到结果:
通过上述示例可知,单个实数或复数在MATLAB中都是以矩阵的形式存储的;在MATLAB中,单个数据或由单个数据构造的矩阵都是标量。
(3)空矩阵。
当m=n=0或m=0,或者n=0时,即0×0、0×n、m×0,创建的矩阵称为空矩阵。空矩阵可以通过赋值语句建立。例如:
得到结果:
如果要建立一个0矩阵,则可以输入:
得到结果:
空矩阵和0矩阵的本质区别在于:空矩阵内没有任何元素,因此不占用任何存储空间;而0矩阵则表示该矩阵中的所有元素全部为0,需要占用一定的存储空间。