![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.2 参数方程表达举例
现在讨论参数方程表示下平面曲线的变分问题.
假设光滑的平面曲线的参数方程表示如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21445.jpg?sign=1739281885-wEqL4Nz8hBzfHIH20OMmuZ3N2qpjfRre-0-78b00cefae699240d50733416f88e507)
这条曲线L是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21447.jpg?sign=1739281885-M0YZyJ4SeuRtJbWbrjRI4c5wAbk0gbCk-0-f130d530ef386fb82615b72ddd30ce21)
的“极小点”.为讨论方便起见,假设泛函定义在连续可导函数集合(C1[α, β])2=(C1[α, β])×(C1[α, β])上,集合的元素满足边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21449.jpg?sign=1739281885-OyfZmL1nAevWQ5KFI9sE9TrB2E0AnF93-0-13ba03c9de912059a5bf8ee66021d548)
与直角坐标形式下类似,选取齐次边界条件的摄动函数(组)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21451.jpg?sign=1739281885-bH76mRCMCUSU7GQPNmoZ14VMscGUdBL7-0-259f44161ecb401543146dd91e3cc2ed)
假设L就是极小值函数曲线,那么摄动后的展开式如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21453.jpg?sign=1739281885-QS3hKokpwoKPEu957Sue0cJgT7FgHW4X-0-e915049ecee92405ab59ffe006b8f2f8)
得到泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21455.jpg?sign=1739281885-rxf2lyj8oYSQB4ZWVMmWo51MFjIfZNMO-0-bfb7b1a5337367d578e4c61ede95f182)
当ε=0时极小点也是驻点,曲线L满足泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21458.jpg?sign=1739281885-881h2BVJ64REDkwGD0jfGNnMkL98mafO-0-07ee79c530cf3d180c0c48b4e64df295)
这里利用了摄动向量{φ1,ψ1}的齐次边界条件.再利用摄动向量的任意性和定理1.5即可得到泛函式(2-22)的驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21460.jpg?sign=1739281885-Gli3uQ6SXcT8Sf0FCvfkonEWNthRcLPw-0-3ef4a21c916f7514e3556b6241198bd6)
这正是曲线在参数方程表示下泛函式(2-22)对应的欧拉-拉格朗日方程.
例2.2 等周问题的解满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21461.jpg?sign=1739281885-bUsoyjhc4fzDNSFipTIRCtdGUF9ejoM6-0-35c238cedf84ab6e780dcd9643b9aa92)
解 回看等周问题的带有约束的泛函式(2-7)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21462.jpg?sign=1739281885-Abj2Vl1mxrOfSXwpS0bEgsXZaF0Ewkce-0-5ce7feefa47ef434037b2a54c9037ffb)
这里的
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21464.jpg?sign=1739281885-wv0Mkxci8cge8llTUuEd0dhu2FTP5C9A-0-ca2c25f9f12c93ea9baa341f63b4ce75)
其相应的欧拉-拉格朗日方程变成
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21465.jpg?sign=1739281885-EwxivSpRgcxrvmtgsAyioz2xIheL3ysW-0-41764044609bb59212f62981c955dfdc)
和
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21466.jpg?sign=1739281885-XXA6QCAx2iVxZOFQpUG2K3SfdD8t34ov-0-89b361e006a92b9912ae9b2f5b66b8cd)
对两个方程进行首次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21469.jpg?sign=1739281885-ryDUXTd8DjpjoTTMQNt2n3AdpRRgEYUW-0-73ec70146fd2a3aab9ef6fa97b57aff5)
分别将上面两式乘以φ′和ψ′,再相加得到
φ φ′-C1φ′+ψ ψ′-C2ψ=0
再次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21519.jpg?sign=1739281885-y583ZVb2nlPR9VrHIDrph9W9JyXyHRRy-0-b9c76abf4082f406c14fe581e3e08979)
因此,可得出等周问题的必要解是圆周,也就是式(2-24).式(2-26)中的常数C1、C2和C可以依据边界条件和围成区域的曲线长度确定,这里略去讨论.