优化驱动的设计方法
上QQ阅读APP看书,第一时间看更新

参考文献

[1] LUO Z, TONG L Y, KANG Z. A level set method for structural shape and topology optimization using radial basis functions[J]. Comput Struct, 2009, 87(7-8):425-434.

[2] LUO Z, TONG L Y, WANG M Y, et al. Shape and topology optimization of compliant mechanisms using a parameterization level set method[J]. J Comput Phys, 2007, 227(1):680-705.

[3] WANG Y Q, LUO Z, ZHANG N, et al. Topological shape optimization of microstructural metamaterials using a level set method[J]. Comp Mater Sci, 2014, 87:178-186.

[4] WU J L, LUO Z, LI H, et al. Level-set topology optimization for mechanical metamaterials under hybrid uncertainties [J]. Comput Method Appl M, 2017, 319:414-441.

[5] SETHIAN J A, WIEGMANN A. Structural boundary design via level set and immersed interface methods[J]. Journal of Computational Physics, 2000, 163(2):489-528.

[6] OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M].New York:Springer, 2003.

[7] WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Comput Method Appl M, 2003, 192:227-246.

[8] ALLAIRE G, JOUVE F, TOADER A M. Structural optimization using sensitivity analysis and a level-set method[J]. J Comput Phys, 2004, 194(1):363-393.

[9] VAN DIJK N P, MAUTE K, LANGELAAR M, et al. Level-set methods for structural topology optimization: a review[J]. Struct Multidiscip O, 2013, 48(3): 437-472.

[10] ANDREW A M. Level set methods and fast marching methods:evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science (2nd edition)[J]. Kybernetes, 2000, 29(2):239-248.

[11] WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Comput Method Appl M, 2003, 192:227-246.

[12] ALLAIRE G, JOUVE F, TOADER A M. Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics, 2004, 194(1):363-393.

[13] 罗俊召.基于水平集方法的结构拓扑与形状优化技术及应用研究[D].武汉:华中科技大学,2008.

[14] LUO Z, WANG M Y, WANG S, et al. A level set-based parameterization method forstructural shape and topology optimization [J]. International Journal for Numerical Methods in Engineering, 2008, 76(1):1-26.

[15] WANG S, WANG M Y. Radial basis functions and level set method for structural topology optimization[J]. International Journal for Numerical Methods in Engineering, 2006, 65(12):2060-2090.

[16] 李好.改进的参数化水平集拓扑优化方法与应用研究[D].武汉:华中科技大学,2016.

[17] BUHMANN M D. Radial Basis Functions:Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12 [M]. New York:Cambridge University Press. 2004.

[18] TORRES C E, BARBA L A. Fast radial basis function interpolation with Gaussians by localization and iteration [J]. Journal of Computational Physics, 2009, 228 (14 ):4976-4999.

[19] WENDLAND H. Computational Aspects of Radial Basis Function Approximation[J]. Studies in Computational Mathematics, 2005, 12(12):231-256.

[20] LUO Z, TONG L, KANG Z. A level set method for structural shape and topology optimization using radial basis functions[J]. Computers & Structures, 2009, 87 (7-8):425-434.

[21] WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995, 4(1):389-396.

[22] SETHIAN J A, WIEGMANN A. Structural boundary design via level set and immersed interface methods[J]. J Comput Phys, 2000, 163(2):489-528.

[23] OSHER S, FEDKIW R P. Level set methods and dynamic implicit surface[M]. New York:Springer, 2002.

[24] ZHOU M, ROZVANY G I N. The COC algorithm, part Ⅱ:Topological, geometry and generalized shape optimization[J]. Comput Method Appl M, 1991, 89(1-3):309-336.

[25] SVANBERG K. The method of moving asymptotes:a new method for structural optimization[J]. Int J Numer Meth Eng, 1987, 24(2):359-373.

[26] HSIA C H, GUO J M, CHIANG J S. A fast Discrete Wavelet Transform algorithm for visual processing applications[J]. Signal Processing, 2012, 92(1):89-106.

[27] CHEN, K. Discrete wavelet transforms accelerated sparse preconditioners for dense boundary element systems [J]. Electronic Transactions on Numerical Analysis Etna, 1999, 8(539):138-153.

[28] FORD J M, TYRTYSHNIKOV E E. Combining Kronecker product approximation with discrete wavelet transforms to solve dense, function-related linear systems [J]. Siam Journal on Scientific Computing, 2003, 25(3):961-981.

[29] BEYLKIN G, COIFMAN R, ROKHLIN V. Fast wavelet transforms and numerical algorithms[J]. Commun Pur Appl Math, 1991, 44(2):141-183.

[30] 刘昌进,郭立,朱俊株,等.基于去降Mallat离散小波变换的彩色图像分割[J].计算机工程与应用,2003,39(11):93-95.

[31] CHEN K. Discrete wavelet transforms accelerated sparse preconditioners for dense boundary element systems[J]. Electron T Numer Ana, 1999, 8:138-153.

[32] WANG M Y, WANG X. PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization [J]. Computer Modeling in Engineering & Sciences, 2004, 6(4):1-9.

[33] CHOI K K, KIM N H. Structural sensitivity analysis and optimization I-linear systems [M]. New York:Springer-Verlag, 2004.

[34] LUO Z, WANG M Y, WANG S Y, et al. A level set-based parameterization method for structural shape and topology optimization[J]. Int J Numer Meth Eng, 2008, 76 (1):1-26.

[35] BOURDIN B. Filters in topology optimization[J]. Int J Numer Meth Eng, 2001, 50:2143-2158.

[36] SIGMUND O. A 99 line topology optimization code written in Matlab [J]. Struct Multidiscip O, 2001, 21(2):120-127.

[37] BENDS E M P, SIGMUND O. Topology optimization: theory, methods, and applications[M]. Berlin: Springer, 2003.