![有限单元法在城市轨道交通振动控制中的应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/519/40778519/b_40778519.jpg)
上QQ阅读APP看书,第一时间看更新
3.3 物理方程
各向同性体的应变分量与应力分量之间的关系已在平面问题的物理方程中给出,即
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037003.jpg?sign=1738942156-lU098r58dWuAhpgL8lc4wp8D4geEPOPa-0-0b0c5e3adbb33eb6a5f4049b59f52022)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037004.jpg?sign=1738942156-0fqL6Dhw31wI8mnqNpotNOGYTxVzztVV-0-65f60018b792dd2fbd50934e8773ebc6)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037005.jpg?sign=1738942156-EHpzTQ7Tlkepo6PBY8D5Yc8rujUDQ4T2-0-39cd3aab807ead8de8815695ef6a880d)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037006.jpg?sign=1738942156-742Lt7aJagHRRFzkqKthYPH5z91HwvNI-0-06fccadc25d21d6dd054e43accc0715e)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037007.jpg?sign=1738942156-q2kub74uoA8WUFrJnPwyvtLrn2Z8jmBq-0-ada974d6f5a92b4d0dc8273d46c84958)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037008.jpg?sign=1738942156-b6X40ubeq0apUia4AO2JXQDu1E13uifa-0-063180dad1455cbbcef3c54c63cdd97e)
以上表达形式,是用应力分量表示应变分量。现在,给出用应变分量表示应力分量,即
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037009.jpg?sign=1738942156-IvdOWq53Xz5146j23AZKNVjCkBXqf5yM-0-e7694a8cbce337ee6155d2bd471ac80d)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037010.jpg?sign=1738942156-Kx28Jv863LEspcFxrDhGPWnByRh0ureZ-0-a8e9c1ae3614f13e961c40b593bd9eff)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037011.jpg?sign=1738942156-WD2ZfxHVR2qSvJR2OIBTMOLnm98tlz08-0-06e58304feda2438828ab7bd82bedecc)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00037012.jpg?sign=1738942156-sOgNZCDnOpl3YVdAISIlCdeX0uzriiuk-0-1e365762669cb87abb5fb484c78b4dc4)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00038001.jpg?sign=1738942156-C0XGDCjbJdUm1JgHrqgtQfdD5LJ60uS0-0-c3a57ae44d0b986f50a60c0026465dd6)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00038002.jpg?sign=1738942156-IilK7snOYg5B3bVdiq97Ep0bATkgHTE6-0-71f39a372a1a06c6db33014186ed3a0c)
另外,如果已经知道三个主应力,可以利用主应力得出主应变。将坐标轴放在应力主向,并利用式(3-15)、式(3-16)和式(3-17),得出
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00038003.jpg?sign=1738942156-bWofaSGce4EpjGtQZfb6fBXo6CmHqF8e-0-28beb08190fefcbf47ceccf1e60c8789)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00038004.jpg?sign=1738942156-VRJsTHRy3mApWIpRzi7tv0o6MIrSxf2N-0-6537ed5f05eb05b87eb36bce2c001792)
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00038005.jpg?sign=1738942156-vBSvJYD8jsKworwroHtHxmM7aNNGjfTC-0-8461cb85090f407a506329dc1c28e217)
另外,还可以通过式(3-15)、式(3-16)和式(3-17),得出体积应变和体积应力之间的关系,即
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00038006.jpg?sign=1738942156-HYgKdBN33HTZ3gN5s2Km2qj9PrCBpjZS-0-027acf7bdb5d401a6cec635769c96b99)
即
![](https://epubservercos.yuewen.com/216341/21182129101956906/epubprivate/OEBPS/Images/img00038007.jpg?sign=1738942156-Av8bgfO1ch0N5wJ07IROmMloRQofyOnB-0-66074821a3cbebfc14255f343e7f4687)
式中,Θ=σx+σy+σz为体积应力, 为体积模量。
引入拉梅(Lame)常数和
,则
σx=λθ+2Gεx (3-31)
σy=λθ+2Gεy (3-32)
σz=λθ+2Gεz (3-33)
τyz=Gγyz (3-34)
τzx=Gγzx (3-35)
τxy=Gγxy (3-36)