2.2.3 推荐系统应用场景
与搜索系统不同的是,推荐系统主要利用用户的行为数据,分析用户的行为日志,从而提供不同的推荐页面,提高用户的满意度以及网站的点击率和转化率。常见的推荐系统的推荐形式主要有三种:个性化推荐、相关推荐和热门推荐。个性化推荐经常以“猜你喜欢”“发现”等形式在首页出现;相关推荐经常以“相关推荐”“看了又看”等形式放在内容详情页;“热门推荐”按照各类数据的统计结果进行推荐。推荐系统的常见应用场景包括:电子商务、个性化广告、音乐和电影、求职等。
电商领域的推荐系统有很广泛的应用场景。推荐系统可以帮助很多用户在淘宝、天猫上完成消费。相关的推荐功能非常多。以“淘宝”为例,其主要推荐功能有:相关商品、店铺推荐、买了还买、看了还看、猜你喜欢等。
淘宝首页“猜你喜欢”的产品,如图2-3所示,商品详情页中“看了又看”的产品,如图2-4所示。订单详情页“你可能还喜欢”展示如图2-5所示。
图2-3 淘宝首页“猜你喜欢”
图2-4 商品详情页“看了又看”
淘宝的推荐算法中有基于内容推荐的成分,如推荐系统需要给用户和商品打标签,通过算法匹配推荐商品给用户;还有基于协同思想的方法,根据某顾客以往的购买行为或者通过具有相似购买行为的客群的购买行为给顾客推荐可能喜欢的商品。
图2-5 订单详情页“你可能还喜欢”
在海量音乐中,如何找出我们自己喜欢的音乐呢?推荐系统在这其中扮演着重要的角色。以网易云音乐为例,网易云音乐的主要推荐场景有:每日推荐、歌单推荐、电台推荐等。“私人FM”和“每日歌曲推荐”是综合了用户听歌记录、收藏的歌曲、歌单、歌手、收看的MV以及本地歌曲等多种因素,再经过多重计算之后给出的相关推荐结果。网易云音乐还设置了“每日推荐”条目,以便收集用户的每日行为数据,不断地完善和丰富用户画像。“歌单”和“电台”的推荐功能也是一致的,主要收集用户的偏好和行为数据。同时,网易云音乐的推荐应用中设置了用户自己打标签的功能,即当系统推荐不准确时,用户可以自行标记。