![非线性系统加权观测融合估计理论及其应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/251/27741251/b_27741251.jpg)
2.3 容积Kalman滤波算法
非线性Gauss滤波的主要问题是计算非线性函数与Gauss密度函数乘积的积分。Arasaratnam[116]等使用3阶球面-相径容积规则,利用m个容积点加权求和来替代积分问题,从而在贝叶斯估计框架下提出了CKF算法。
2.3.1 容积规则
对于定理2.5中的5个Gauss积分式,可以看出,它们都可以转化成如下形式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_70_1.jpg?sign=1738839973-A4i5KZkYjcgPUjJHgWIHfaYBV48UypQ5-0-e7787a183a8113b94648fc1bcf0f99da)
其中,C为标量常值,f(x)是向量函数或者矩阵函数。而对于这类积分形式,CKF的提出者巧妙地将其转化成球面-相径积分,再通过容积规则进行近似。
对于式(2-145)中的积分,如果不考虑常值,令x=rz,由积分变换有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_70_2.jpg?sign=1738839973-rZA2q1KIPzKWGvm6oopJWubrztYrlJsd-0-91731a52fb9b3e7d3dc05e82be3d52a1)
式中,U n为n维单位球面,σ(·)为U n上的元素,则式(2-146)中的积分就转化成一个球面积分和一个相径积分
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_70_3.jpg?sign=1738839973-Vuy0tvPBjuSv18cVb9wCQ3v0uCt5GDEo-0-6f4e05726ef93be35da4d4d32c543b53)
对于式(2-147),可以用球面容积规则近似。由于容积规则的全对称性,f(rz)中的每一项单项式为。其中,di表示变量的阶次,当
为奇数时,该项在球面上的积分为0,所以采用3阶球面容积规则近似该积分,只需考虑
和
两种情况,上两式在全对称容积规则近似下的球面积分为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_71_1.jpg?sign=1738839973-vjbcHQBJm4kXtOt55sLAjbaMJk274rLn-0-75a65700e8195d864a33af7ac5dd62ef)
其中表示n维单位球的表面积,
。
求解上两式,得到,u1 =1,u2 =u3 =…=un-1=0,故容积点可选为单位球面与各坐标轴的交点,即点集[1],则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_71_5.jpg?sign=1738839973-ekln0FZ9BIZLYgke1iZzNwBZU2uwOzNU-0-ead6212c661bfee296cb6bb2adee7645)
而对于相径积分式(2-150),令,由积分变换有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_71_7.jpg?sign=1738839973-LMSiBTGK2LMsg5kH0S4maPGTQDJcDzlp-0-c395dc8d7eb55084f38c4be2b6063505)
式(2-152)为著名的Gauss-Laguerre积分,根据1阶Gauss-Laguerre积分规则可知,当或者
时,可求得积分。
同时,由球面容积规则形成的球面-相径容积规则对所有的奇数阶项的积分都为0,故只需考虑1阶Gauss-Laguerre积分即可,此时,选取的积分点和权值分别为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_71_10.jpg?sign=1738839973-KNAWownr8D6PZJQtS4RkkUL9lbniYA3Y-0-faecc2fc41b1298b369e4b3677b75824)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_1.jpg?sign=1738839973-rTJlsRcCpPxE2lYJqsT4PYeLTNpRcMjg-0-368ff5feecbf476c294a48b0c6d4a9b4)
将式(2-151)和式(2-155)代入式(2-146),可得到
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_2.jpg?sign=1738839973-Jawh5VPW5NcHJTQzeeVM6kS9F8y46E9h-0-aa81da54d31ec5f98042b120858aa81e)
式中,。式(2-156)即为3阶球面相径容积规则的近似策略。
对于一般意义下的Gauss积分
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_4.jpg?sign=1738839973-4M3KCik5ep54VaW4rcElfbn5tJTG72mI-0-5b9e4897d2e73cef074c07b903f30ef1)
令,则
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_6.jpg?sign=1738839973-nmgGL0lKc0ZNkwoqWoc85Xv0pcYVYqg0-0-eb3b632f3e47c1ca43c5c209736d53a7)
其中,令m=2n,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_8.jpg?sign=1738839973-1CX9fsOyMd0AFnUbXXRob5Y3rblU96P2-0-a694344d8199b4f69cbc465d84bdd9ab)
所以,得到非线性Gauss滤波需要近似求解的积分为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_72_9.jpg?sign=1738839973-YwBJSCkcFK8n93w6dbVDnGFc9IER1k2q-0-0693338ee7a6614c2280429971140869)
2.3.2 容积Kalman滤波算法
从定理2.3中可知,对于非线性Gauss滤波递推公式,若要转化成具体的可实现的滤波公式,则需要各种近似策略,而基于3阶球面-相径容积规则的CKF算法的实现步骤如下。
第1步:初始化
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_1.jpg?sign=1738839973-kEgtOaTCRNgx62sj0g89i89MIpg1d6Hx-0-10c955a7c0f29b7d882e28d7d2549fd7)
第2步:计算基本容积点和其对应的权值[116]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_2.jpg?sign=1738839973-h9ThOPWHiccFPhJcWWjOb3ltlI5TXwxv-0-9cb76fed4306778656edd1eeceabafa7)
其中ξi是第i个基本容积点,m是容积点的总数,根据3阶容积积分法则,容积点的总数是系统状态维数的两倍,即m=2n,n是系统状态的维数。[1]∈Rn是完全对称点集。
假设k+1时刻的后验密度函数已知,初始状态误差方差矩阵P(k-1|k-1)正定,则对其进行因式分解有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_3.jpg?sign=1738839973-vWPq0LitsOQ78ChK6KxvA27xUWElCcVh-0-8d0924cd1eed43667073926bbb329a15)
估算容积点
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_4.jpg?sign=1738839973-8ETKymywnO4tPFMUEo4FkhyTpRADDrfb-0-b1d0aaf643fd740f156c46a061ad9194)
估算传播容积点
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_5.jpg?sign=1738839973-beRe6fe9VIHvOBShe9cKudyTfWF6bk9p-0-81456170263e7abe0347194a625a0e79)
第3步:计算状态预测值和误差协方差矩阵
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_73_6.jpg?sign=1738839973-yLraOAOC64F2BSCX0cTTXIieJgM7T4WN-0-4622234396ea15d9bc01501cf92db68d)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_1.jpg?sign=1738839973-KXbYbpRY6NDEN08ZfbThYStw43eImU0u-0-9275c6150da380bf6dc6ebba3296fd12)
第4步:估算预测容积点
因式分解
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_2.jpg?sign=1738839973-KxqzxAUJF7JrCkbCLdWvSjxEvZgggPYE-0-ea979550df75cdd6a638d6c4431bcce6)
估算容积点
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_3.jpg?sign=1738839973-L06Ff82dZfBaf2FQwNDzK9u0KMFqO723-0-a93881273ee9e9781a1010bca2bf93f2)
第5步:计算观测预报值和误差协方差矩阵
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_4.jpg?sign=1738839973-C3XIrcan2mvaUsd0bv9qpUMIvz6Jpkz7-0-a46d9fc188741329fb128b3370461527)
第6步:计算局部状态滤波和误差协方差矩阵
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_74_5.jpg?sign=1738839973-mZMiahWAkexVP4Lmz87QUfWFKbPwf8ub-0-425c1ad95bbfb2cc066e83b3fe267ef0)
综上所述,图2-3给出了容积Kalman滤波器的算法流程。
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_75_1.jpg?sign=1738839973-pqfGaWEeUZJ28p4GPBOPmD20zNA4lBwj-0-53520ebac2cdcd373efd134fb0eb4ab5)
图2-3 容积KaIman滤波器的算法流程