![非线性系统加权观测融合估计理论及其应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/251/27741251/b_27741251.jpg)
2.1 递推线性最小方差估计框架
考虑如下非线性系统
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_42_1.jpg?sign=1739276953-kpg9IimeqE0PNUe5D8lL1bU8QmV6gn3n-0-f54542d63588701b3b6c492dcf679b87)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_1.jpg?sign=1739276953-xWb4k4eZrQ6hcV50B2fudKFwnDnLInrM-0-2d261d89067e2e5b18844a40559c2be4)
式中,f(·,·)∈Rn为已知的状态函数,x(k)∈Rn为k时刻系统状态,h(·,·)∈Rm为已知的传感器观测函数,z(k)∈Rm为传感器观测数据,为系统噪声,
为传感器观测噪声。假设w(k)和v(k)是零均值、方差阵分别为Qw和R且相互独立噪声,即
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_4.jpg?sign=1739276953-dnwDQtDj3PYLk0n79lr1QpNqJk08tpC1-0-d399e6eaed73ff6743e53f0fa380b229)
式中,E为均值号,T为转置号,δtk=0(t≠k),δ(·)是狄拉克函数(Dirac Delta function)。
问题是根据已知观测数据Z0~k={z(0)~z(k)},求解状态x(k)的估计。
2.1.1 射影定理
定义2.1[14]基于m×1维随机变量z∈Rm的对n×1维随机变量x∈Rn的线性估计记为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_6.jpg?sign=1739276953-HqQ3jfVAzm1AZH4qfoXRYi2x9RjxJFSO-0-cf04600412e090e9022e5bb72826002b)
若估计极小化性能指标为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_8.jpg?sign=1739276953-X0OQwW5WQIkDd8UG2WfpvyB2Uf9nuoFa-0-34856c4594ccde8d161b8a9eff511166)
则称为随机变量x的线性最小方差估计,式中E为均值号,T为转置号。
定理2.1[14] 基于z∈Rm对随机变量x∈Rn的线性最小方差估计公式为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_43_10.jpg?sign=1739276953-GC7IwmpYXEOqVX0bo9x9qIOHMaO2bcet-0-31778635530680914c517159e87d9422)
其中假设Ex、Ez、Pxz、Pzz均存在。
证明:将式(2-4)代入式(2-5)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_1.jpg?sign=1739276953-EH4xltNtMdn3pmEDDZ1kgSZpwm2P6mww-0-3e01afc7689eb9e257b89ddcfd718dd8)
令有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_3.jpg?sign=1739276953-UiDcfY7LnOwT2ngynKx3Ldn7FwYSULD9-0-c5767a209f2ec9bb3b89798df464625f)
所以有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_4.jpg?sign=1739276953-5i0Ky7dSJVuyrkblAvhyEbJ4cuHQ9M0L-0-f69c3e44d61b391e93ff14c0908c8ea2)
将式(2-9)代入式(2-7)并定义
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_5.jpg?sign=1739276953-x4DCWGZhXf7NzXUqdT0beTDPrqLKY8iR-0-c99777253197d66ae44c49557a322177)
可有关系
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_6.jpg?sign=1739276953-nJVudWXYJxK8NAyIBDh9wel3YsG3L692-0-a5e2c9a16f6a298ff7d990e2007513d4)
令,应用矩阵迹求导公式[152],并整理有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_44_8.jpg?sign=1739276953-Jm9h2lLiSq3scKAu5b25QCuqXGx0QdRE-0-36f5b6fb385dce0b0289213f2251f47a)
证毕。
推论2.1[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_1.jpg?sign=1739276953-oT5SIzlvTZYwP1BC1z7s6lhrfWSMj1Nz-0-c6a713009ef637d71ada52d49618d3a3)
证明:由式(2-6)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_2.jpg?sign=1739276953-EJkVqVV0NAxn0iJkhzo6ClZJQkjIVNnu-0-32fd777482167406d065ecfd36d31fb9)
证毕。
推论2.2[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_3.jpg?sign=1739276953-CSsHZ2OgV5FJsC7ZXW6aD10eMMUBS48o-0-9b622ad0f410bcc9f7ed7dc594dd8924)
证明:将式(2-6)代入式(2-16)左边,有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_4.jpg?sign=1739276953-lTZk9gvca4Y1zHOiNO0ECf09BRfi4Mk8-0-4cd964814bdd0e68c359b98de2789c13)
证毕。
推论2.3[14] 与z不相关。
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_45_6.jpg?sign=1739276953-sfxZXxcqNbehhfKeA93xJK4L65Dy41Tc-0-f67c058cb00add637e3b99458b08b93e)
证毕。
定义2.2[14] 与z不相关称为
与z正交(垂直),记为
,并称
为x在z上的射影,记为
。
定义2.3[14] 由随机变量z∈Rm张成的线性流形(线性空间)定义为如下形式的随机变量z∈Rn的集合
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_1.jpg?sign=1739276953-OY1mGQUwVdUtO7isvgbl7nIOChWDZRRp-0-cbfc11f341243f03384e8540b9a62ad6)
推论2.4[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_2.jpg?sign=1739276953-8gi7SjaHTagM7PusbLPaDzPtR5f71rpy-0-9c6013c4a0e9d8898bd741a2a6ee3dcc)
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_3.jpg?sign=1739276953-4QKAr6wvK1T6ZwJfF4kgbU1YQBsnUw8k-0-ed42eea0cda97e45b1dded934c65282f)
证毕。
定义2.4[14] 设随机变量x∈Rn,随机变量z(1),…,z(k)∈Rm,引入合成随机变量ϖ为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_4.jpg?sign=1739276953-glMOWDcqNRHTTQ8MEXZIBVVRWrGCkZ0C-0-c6d311203d21b013c8388e98c93cbfcd)
由z(1),…,z(k)∈Rm张成的线性流形L(z(1),…,z(k))定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_5.jpg?sign=1739276953-mYAQ27lKwCymySjvMoB73FYM0OAJ2gCY-0-2633df32a95c483857fbfbb154a136ac)
引入分块矩阵
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_6.jpg?sign=1739276953-w5rkGP1IkV6whoafQL0QFeTrbY3goUFM-0-5a1706481125433613663891acf043e3)
则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_7.jpg?sign=1739276953-jv3N6iDkJrHCtbf24XhMI60305AoHkO0-0-afa9046f82baf82b177864ab96a35973)
定义2.5[14] 基于随机变量z(1),…,z(k)∈Rm对随机变量x∈Rn的线性最小方差估计定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_46_8.jpg?sign=1739276953-YUVb92eCQXkrgWkvxsY7svjmp5fdiYv9-0-c70f7f040a2e81b5fdd359969fc3380b)
也称为x在线性流形
或者L(z(1),…,z(k))上的射影。
推论2.5[14] 设x∈Rn为零均值随机变量,z(1),…,z(k)∈Rm为零均值、互不相关(正交)的随机变量,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_3.jpg?sign=1739276953-7uNNer4hSq8A5pN9qiz7ZwqZoMJdrio2-0-73a3487c88d78cc8946737ff29c244ed)
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_4.jpg?sign=1739276953-1TQ1Uz3ZRFEZiFwfRp2RkQEas2rfTx1o-0-8c5e206ffc6496153e88ca19defaa65b)
推论2.6[14]设随机变量x∈Rp,y∈Rq,随机变量(Ax+By)∈Rn,A∈Rn×p,B∈Rn×q,随机变量z∈Rm,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_5.jpg?sign=1739276953-Tz0WMM3rSalBPImgGtoZ0CwKAflQcPUh-0-6da3995734684de65ef94d436917f9a8)
推论2.7[14] 设随机变量x∈Rn,随机变量z∈Rm,则有关系
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_47_6.jpg?sign=1739276953-3wJh1VBN42qeQfIPwh6ZO7sgeOo2RqNk-0-e746575f2d0c4c36b08c262f3e21d50a)
其中x的分量形式为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_1.jpg?sign=1739276953-jplmEcFd7Ui6SE9u8Gxt5VyWh10ZGc7Z-0-39affa78a334e76935b7209a6d3a04b5)
证明:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_2.jpg?sign=1739276953-FdBfBckFI2YhmrizT3BqdP4AaJw5Pvqz-0-5ee3794b5d56ac5b0a0b4b6cf6a640e6)
即得到式(2-28)。证毕。
2.1.2 新息序列
定义2.6[14] 设z(1),…,z(k),…∈Rm是存在2阶矩的随机序列,它的新息序列定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_3.jpg?sign=1739276953-dY9tByYlpGsgEnso4LwMQEtV5XBzxt0g-0-c7c658c7faabd2f2b41a317ac1623044)
其中z(k)的一步最优预报估值为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_48_4.jpg?sign=1739276953-fZyvNyQQFQxAlFy57z9any7sqSASJqQE-0-92a2b5209ba6f14a103bf4338cacb547)
因而新息序列定义为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_1.jpg?sign=1739276953-WKFV9pUhpE5S1YiLVRneO2AbcBBhh8By-0-512afcd065df8c8208b52ca8e4d07211)
其中规定,这样可以保证E{ε(1)}=0。
定理2.2[14]新息序列ε(k)是零均值白噪声。
证明:由新息序列定义式(2-33),有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_3.jpg?sign=1739276953-q3vj1BzbMkxUPRKNc9PNHZ0owSMW0nI0-0-288badd1fab4081edaff7b3e2c5e76df)
由推论2.1,可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_4.jpg?sign=1739276953-HOLCuJPe21K8HgH44hNyhoBxIlxIfHVi-0-fb5eb20d669c5858a27f510949964f56)
设i≠j,可以设i>j,又由于ε(i)⊥L(z(1),…,z(i-1)),且有L(z(1),…,z(j))⊂L(z(1),…,z(i-1)),因此ε(i)⊥L(z(1),…,z(j))。
又因为ε(j)=z(j)-zˆ(j|j-1)∈L(z(1),…,z(j)),因而ε(i)⊥ε(j),即
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_5.jpg?sign=1739276953-YPh2mpMhbclpSlqpRbpXtKyw8If2ChVB-0-cdf538c30327694a58e8aae1e7279786)
故ε(i)是白噪声。证毕。
定理2.3[14]新息序列ε(k)与原序列z(k)含有相同的统计信息,即(z(1),…,z(k))与(ε(1),…,ε(k))张成相同的线性流形,即
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_6.jpg?sign=1739276953-2FPfIUGVi1cP9Ij9BVPJ1yyI4leQHofn-0-ba408b4100e3b8c3fee8d9f92102a52b)
证明:由式(2-6)和式(2-32),每个ε(k)是z(1),…,z(k)的线性组合,这里引出
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_7.jpg?sign=1739276953-wR6xKTx153x0vTTEMnN2dGUAoyXvsZeV-0-2864c907aab62d21d8e9ee2cec43a405)
从而有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_49_8.jpg?sign=1739276953-aOBRBzEp4XdbVR7StPahwfGdKVswGpgg-0-3ca02ce3593ca53ad24c28b7939c26d9)
下面用数学归纳法证明z(k)∈L(ε(1),…,ε(k))。
由式(2-32),有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_1.jpg?sign=1739276953-9F4cakEUVKsOmDoPVz8NeqVv8n4W1WM8-0-243c8d70dfbdb80e1a99401dea85f7f3)
故有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_2.jpg?sign=1739276953-cGiGLtRfq3lPOyKF41FOitiJoh9vNUSR-0-5e0766e3f123da8b1b01f9da359673f1)
从而有式(2-37)成立。证毕。
推论2.8[14] 设随机变量x∈Rn,则有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_3.jpg?sign=1739276953-s9Wqq7aTiMQ1nT7zO6XmKDlP1f5LQ0dR-0-d75dfc93007a8d47ebfc5ab891fc508a)
定理2.4[14](递推射影公式)设随机变量x∈Rn,随机序列z(1),…,z(k),…∈Rm,且它们存在2阶矩,则有递推射影公式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_4.jpg?sign=1739276953-Rz8XFH44fTzJPK9hsulffyPFVBjPX91j-0-fad3abd3bd630de7a14563d06ed4a988)
证明:引入合成向量
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_50_5.jpg?sign=1739276953-yQrymuKm59do0tj8nWkg3TPfAAm7brXH-0-9461fd652f435a846f5ba36bcf28646b)
有E{ε(i)}=0。
由式(2-42)和式(2-6),有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_51_1.jpg?sign=1739276953-Y7CGv1yVHp3eNQR1sB1bpEZrmBQgg1SF-0-c97ca92665d22a5b675889229d972c41)
证毕。
2.1.3 递推线性最小方差滤波框架
2.1.2节,在最小方差意义下,递推射影定理被给出。本节我们将给出一种具体的滤波估计框架。
定理2.5[116] 对系统式(2-1)和式(2-2),局部滤波器有如下递推滤波框架
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_51_3.jpg?sign=1739276953-r1FfVnfb60K9gNNHPxWYtzF9CfOZR6Qk-0-5385404c0afbd4b1e56f7df738ae4cb4)
其中滤波增益为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_1.jpg?sign=1739276953-QjEk91jcQ6YfV5X7wnB0FANz5rQpEWLs-0-089819cb1e6176062e8523469631d04d)
滤波误差方差阵为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_2.jpg?sign=1739276953-ZvZmAdBb3i1InX2zdbM5Z00y74Zl7WdZ-0-273ec1f38ace4b165872be793877a6b3)
其中
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_3.jpg?sign=1739276953-xYSpKqsIXlKbgyK2BpMtWKCDmGhupPh9-0-5f7c0591523fb0eef8da665041b7faf0)
预报误差方差阵P(k+1|k)为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_4.jpg?sign=1739276953-7jSx3ji48KlPb3UXE06afQTOmh7k0X5R-0-a89aff4f269e9c131e93116b741d7916)
证明:根据最小方差估计理论,一步预测是状态的条件数学期望,即有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_5.jpg?sign=1739276953-VYxeHB6hQ9c6DvyFMBjujavD80mv807z-0-a4731f7407d7d50e5d89642f6542937c)
可以得到式(2-48)。
即有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_52_6.jpg?sign=1739276953-GaScZjIW1jCk8CHzS6dS0PlFUkCEGqY4-0-76b5cbff433eeeeb25e45ee78949fc1d)
然后可以得到式(2-49)。
由预报误差协方差阵Pxz(k+1|k)定义有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_1.jpg?sign=1739276953-cjt4cjMAhJNK974ctwwHhHzexAe4BlrI-0-1ddce25b282b77a869e584098464325e)
因为假设v(k)是具有零均值且独立的Gauss噪声,所以得到式(2-50)。
由观测误差协方差矩阵Pz(k+1|k)定义有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_2.jpg?sign=1739276953-LsXD6qpQuqZmW5yP4kkD4Zq3Z4JFj8SK-0-71ced6b21bd5fe46bf106449d55e9153)
类似于Pxz(k+1|k),式(2-56)可以写为式(2-51)。
由预报误差方差阵P(k+1|k)定义有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_3.jpg?sign=1739276953-eM0co7qoWHVXhWbwiCPhn2CiCdckx1Dt-0-a6f24a96e891c4e20cc25f65bbac7d13)
可得式(2-52)。
将式(2-45)代入滤波误差协方差矩阵定义式,整理得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_53_4.jpg?sign=1739276953-Dc3Eua0sgwelMYyfMfQA90iSLJqSUJ6i-0-e20ee40532f157acab5bbb5ee3792f26)
基于最小方差估计准则,,可以得到式(2-46)。证毕。
2.1.4 Kalman滤波器
滤波是去除噪声还原真实数据的一种数据处理技术。Kalman滤波在观测方差已知的情况下能够从一系列存在观测噪声的数据中,估计动态系统的状态。由于它便于计算机编程实现,并能够对现场采集的数据进行实时更新和处理,因此Kalman滤波是目前应用最为广泛的滤波算法,在通信、导航、制导与控制等领域得到了较好的应用。
考虑如下多传感器定常线性随机系统[14]
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_54_2.jpg?sign=1739276953-P0yJD9XWJ7oypOzmjj3O9KaZk3L0ghdh-0-0a1c6604581cea9b4e6bd2f1c6b537b8)
其中x(k)∈Rn为状态,z(k)∈Rm为第j个传感器的观测,为观测白噪声,w(k)∈Rr为输入白噪声,Φ、Γ、Η为已知的适当维常阵。
假设1w(k)∈Rr为相互独立的,方差阵各为Qw和R的互不相关的白噪声,且噪声均值和方差统计为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_54_4.jpg?sign=1739276953-aSPK7ljQL7U9o8ePKK4kAAndYt6eiAG3-0-bea25f7a06396c5d5ff0ca0db2a9f930)
假设2x(0)不相关于w(k)和v(k)
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_54_5.jpg?sign=1739276953-bD9sSFJ6HpYqX8g24L4BZHHy9q0pe4Yn-0-538360f82e8180bdd66fb3f5a890c0cb)
Kalman滤波问题是:基于观测Z0~k={z(0)~z(k)},求解状态x(j)的线性最小方差估计,它极小化性能指标为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_2.jpg?sign=1739276953-PHb1ndNfHAbaQLJgZi2RNh93qGv6f0XL-0-ce48579f93600071cc0be1501d0c626a)
对于j=k,j>k,j<k,分别称为Kalman滤波器、预报器和平滑器。下面应用射影定理推导Kalman滤波器。
定理2.6[14] 系统式(2-59)和式(2-60)在假设1和假设2下,经典Kalman滤波方程组如下:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_4.jpg?sign=1739276953-whohTqY8S388RS9LdcNStfjRJffYhR99-0-945e9c298460a2a9cb946f838f618594)
证明:由递推射影公式(2-43)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_5.jpg?sign=1739276953-OHlkPl7M8VnvvdC2ABRdWnR0qWrRWWxj-0-15c2e33b1c32377a7cf36354f8757e39)
令
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_6.jpg?sign=1739276953-mVhNLKoIuN6SmltvoYBWq6Nzt19b80L8-0-d596f73add014be2b72013b5f5e2b28b)
则有式(2-65)成立。称K(k+1)为Kalman滤波增益。对式(2-59)两边取射影有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_55_7.jpg?sign=1739276953-FUJALmVd1fqz1JSeNOPPlx4eqQs2SxPL-0-bfaac7fb5f510ddad9ddfa0cfb4607c1)
由式(2-59)迭代有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_1.jpg?sign=1739276953-MNuvwnacGZZPsfBF4dhVKR4v8l6Z9Y89-0-2c6e41ecc25bf743df037fe736650af2)
将式(2-75)代入式(2-60)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_2.jpg?sign=1739276953-IEtLjhdNNYciPHfUFFY40hULxVa8qut9-0-7a08810632f4f23ea4b94768fd977790)
引出如下关系
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_3.jpg?sign=1739276953-pzfiGfoLbzkUAzqYmMG0wx6HMbtVJS43-0-2b0cadbf48486e2282e79a7d74145d45)
由假设1、假设2和式(2-77)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_4.jpg?sign=1739276953-tMW0aMQ4vGeMPDJ1TIiuGK8m5e1qz6Mv-0-ce676a9d35b5d5a71e7c1cb6b0579ecf)
应用式(2-6)和E{w(k)}=q可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_5.jpg?sign=1739276953-iP0RsOM5RHDpjrWf9VNFVZcWsZeKSb6O-0-eb1f0d81af37ae528c2939ec6dffbe38)
于是得到式(2-67)成立。
对式(2-60)取射影有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_6.jpg?sign=1739276953-eqZ507GPWGU5hkteohiSADUxABOIdm2c-0-80d4508e2d57360b38f281f24694756c)
由假设1、假设2和式(2-77)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_7.jpg?sign=1739276953-KrJBxqBg4tDGQitT5osIVryKvIlbaWD3-0-e111d9ed3566a6e012b84a795a26ffce)
应用式(2-6)和E{v(k)}=r可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_8.jpg?sign=1739276953-PubAvs8ge9qmB051EreYKN5I8OhQTahr-0-e724f87d791b7bec76cdb38ca1c1fb8e)
于是有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_56_9.jpg?sign=1739276953-FlXFiTjALBuGIGLLk8G0UmSoxJSWGQjC-0-897fd5b42b5830071a432c178ba3e2cd)
将式(2-83)代入式(2-33),得到新息表达式(2-66)成立。
记滤波和预报估值误差及方差阵为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_1.jpg?sign=1739276953-YfBAf8PymTYl9IzkLOpsYCI1iioyPhmL-0-94426aace0a01dbd6dccfa0135378c68)
则由式(2-60)和式(2-84)有新息表达式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_2.jpg?sign=1739276953-jOnTUgeMuPBtL4URYLRMqgZweqRS4WwK-0-a451c6e42930612204674dcc8bf4fa5f)
且由式(2-59)和式(2-67)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_3.jpg?sign=1739276953-IoOZhx35vP8oTsjY7ALnQNFSzIJvxwUR-0-f1741ac6832f14173e3785dc873a1950)
由式(2-65)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_4.jpg?sign=1739276953-J8ynIT0namERjvs0DhqTfrlkjgzw344T-0-371a70ef2f4b1c4e4837a66bf66306db)
将式(2-88)代入式(2-90)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_5.jpg?sign=1739276953-9QsgAqzkNfnwsaZkZD8LyMd14etLPADj-0-393b88086a266804b5b894faea92ed25)
其中In为n×n单位阵。因为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_6.jpg?sign=1739276953-EFqofXqDJP3m5euBAF1izm97k3a6IKdv-0-1ad4714f956c5faf802cf2186b8317ac)
故有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_7.jpg?sign=1739276953-p1qo2u1lXMmfgMFQozsI3ShQS5InhWxd-0-34a1931ca211dfb031ee10bc3ba7052f)
这里引出
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_57_8.jpg?sign=1739276953-3PZComUsA6YkkoF8kbXqkr0kYC9H5FVS-0-234c0ee294a5de7ca6e84db5f500db1e)
于是由式(2-89)得到式(2-69)成立。
又因为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_1.jpg?sign=1739276953-nEfzkhHCX7wO1N7U7qHGX2rU8g9ag8ol-0-0b4b5bd3bc62acc980de78061e47b025)
故有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_2.jpg?sign=1739276953-mODJ97qzBupRFGmXWTyZimSbGdrKhEOe-0-85a3cfe9a010ffd46de7111161d33dd3)
这引出
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_3.jpg?sign=1739276953-U693GX8bTlZiA6mCPYxHLNfeJrPRRRIb-0-83e1c05a372b7027860dfef943e70f4d)
于是由式(2-88)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_4.jpg?sign=1739276953-N8IPiDmJKHjFfQg5PuIkJMGxx8KIp2qU-0-986a33bc4bb67340757034e1dcbe3e78)
且由式(2-91)可得
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_5.jpg?sign=1739276953-mKDahnZZHElyZSuYZ7O6yOrQz9HbpsR1-0-847ff6a2174af2791ae072de29d5a0a7)
由式(2-88)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_6.jpg?sign=1739276953-p3AmOhmqigrTitSEawOXfoiCB7rzGKrH-0-cc54a0d8ddb9b35a3cb3495718b07e5f)
由射影正交性有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_7.jpg?sign=1739276953-Eju0zeAuCRZm4nMF5DWfRuNYTrtOVYi7-0-974885f752e73c3744634eb7a474e1ba)
且存在关系,于是由式(2-100)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_58_9.jpg?sign=1739276953-zhtgFswbqo08H2vko8lpQvE18bcObwxT-0-8bb261909c6e576e41881a771a9e74ed)
将式(2-102)和式(2-98)代入式(2-73),则式(2-68)成立。
将式(2-68)代入式(2-99)并化简整理得式(2-70)成立。证毕。
Kalman滤波递推算法框图如图2-1所示。
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_59_1.jpg?sign=1739276953-ZvjOEUP1NVNv1Tsq5eAFexhHSEjsdD97-0-58dbf8a0710e0ab99132264f35c139c5)
图2-1 KaIman滤波递推算法框图
2.1.5 ARMA新息模型
由式(2-59)和式(2-60)有
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_59_2.jpg?sign=1739276953-0o7b4RSOtqR26ZEerAyPyf0IVQu5c0c4-0-51014852da97ca636fd52f1e53e0cb3b)
其中In为n×n单位阵,q-1为单位滞后算子,q-1x(k)=x(k-1)。引入左素分解
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_1.jpg?sign=1739276953-TwqJ5iRiPw6QB1s1sKpl3ikUtWLFdbbw-0-e3415f3248fffab2ec425a8f8cba6048)
其中多项式矩阵A(q-1)和B(q-1)有形式
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_2.jpg?sign=1739276953-wVb2LS3slWSMawllwfksUvJhGMNT4FXh-0-5276751a3fbe4010667b6ef8cb6f4c74)
将式(2-104)代入式(2-103)引出自回归滑动平均(Autoregressive Moving Aerage,ARMA)新息模型
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_3.jpg?sign=1739276953-hufEWzACyJVCezX418Fb8Qh3ND5U19XW-0-47dc2e4ef9bc0f0d70d79ad6740def4d)
其中D(q-1)是稳定的,新息ε(k)∈Rm是零均值、方差阵为Qε的白噪声,D(q-1)和Qε可用G-W(Gevers-Wouters)算法[14]求得。
2.1.6 基于ARMA新息模型的稳态Kalman滤波器
定理2.7[14] 系统式(2-59)和式(2-60)在假设1和假设2下,基于现代时间序列的稳态Kalman滤波算法如下:
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_60_4.jpg?sign=1739276953-fGVU2pOPTxpXs5BLOb7P553WC4QMugpt-0-2bdd1a9394b8aef0f1e0f078ccfaf760)
其中Mi可递推计算为
![](https://epubservercos.yuewen.com/F0752E/15937388404514306/epubprivate/OEBPS/Images/37415_61_1.jpg?sign=1739276953-LpBr0ynpxFZGfX0fo9e33t21AZfbaptJ-0-65cb52d6e53adb3cd94746d77a4a8b5d)
其中规定M0 =I m,Mt=0(t<0),Dt=0(t>nd)。
证明:见文献[14]。