![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1738852344-klrr0F5BuMfJ8aX2CtLgWV3HWB9rg2iC-0-584ea30e6d126bbc3f05dab7ba422046)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1738852344-suMoQLh8UZxagQ4S6BeAc0sLgb4B3eTW-0-6b2424bc7b5aaffa0fce5f135c178e0a)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1738852344-TsF3hJTaQMpYXeq0NUosZCWvEuzZINyV-0-7dfcfff68fe62f8a53bb4ea06d5d707b)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1738852344-uTgesc6qP26JbupqeGP135SI7mQxInp7-0-b3c0475f0a7bd5a419b73ee838cd2513)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1738852344-U2E3iDG7oKQ6cssn4zK15z4IpHgbkebw-0-0a34df4acb1932e5339538562d6598e8)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1738852344-VMG3HjkSrsDox0OIR5m3KN0PqnIeOZL7-0-dbf95d564613e76fb9879b5be7f3d13b)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1738852344-ja6h24LNYaBTyPEzeJtnzBASQDLyrzAs-0-e4d69d32bd107470ac7b66ee0645dca6)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1738852344-rssHYD6LftLrfYuAIKIR54qmOyUvm8ZA-0-1b22e8677128cdedf571eea8ca41bd18)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1738852344-YzK1Nei95ykTRrDMpHfx1WJUcPjyzXwO-0-9167b3f982b33c0a3a83d94134338198)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1738852344-oLLfTOlwlrXfi7nKiWe1fvJ4pHmEGf2T-0-87cd054beda0773eb89c37900872a13f)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1738852344-5RwCIjo3CKTgOB3O5GsH6vxOYDK8FnIf-0-b03c87da91509c8a006a57e901cd8d52)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1738852344-Vio9cfUDNA43LHTlEeW9iZwkifcWQeiQ-0-0cb0462634d1bdb1a932ad905f728074)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1738852344-Vw5VQ6IrnpjnPbRsC7yMI2B9TgUAYZ0f-0-74d3f84accb621ffb0c2cb4ffddb4867)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1738852344-QTz9xAHvZMuUKNftqY4U4MrYI2nCSf0N-0-a783f8e6ebc135904fb3e2eb25dab210)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1738852344-Sfri2tX1BunuBTEb7QzDx87KDu6IqtjL-0-c5fc1dd85c2072e39e3ecc7556907503)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1738852344-1uQQ2HgHnyzo4izez3CjXvcIIDCsQndf-0-49d5cb84ea1372419630ccaeae5620e2)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1738852344-YiCNisSGSWoROi3lGPcoYyAdNVDXp8fN-0-3cd3bbda9730442b43a3a312e79fdc9b)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1738852344-VpB5C9awBmv7tQ3ky6GE741ccUWlgsVS-0-e952fc29838fd0a8bf644f285ecbe205)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1738852344-yaAjbNNs4xU1asEXrDTyJIzyGTittHUg-0-903ee4f8f9bb832431bce48ebed45441)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1738852344-omC4rMPmnbQSyi98diFKgY8P8ksn2teH-0-bea525a91cf8c0f76ff8079b7a479d21)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1738852344-76gNB3CUxHAbtCVWLgTNsmFjoTmWZWZ9-0-e7b9f9b3db9f6542dfedd9e34050452c)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1738852344-FDClzI9v1V6NSevbOVfTYkHLDTnaKxqa-0-ef3742be81101df580daffc60fdd5efa)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1738852344-StGWCekRlGa8sFdG53eMySaLT4tsRhS9-0-92fbe63ce435a3a408134c1a9e2ace1a)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1738852344-uDRXFfcTdHBhKwc1JbK6Z46OAuqMJ6c9-0-910c59ea60408dffa3bb0d9d247f1867)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1738852344-Mo7IkNgvSs9ijydCOtkebaqCs5oSGx6y-0-c575da76e6661251425f20fc0c3f00ec)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1738852344-As4hXylsEycNPPRiZNznErbmSPckE9D8-0-a92a70a3041ba763a1e3ce9afd857827)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1738852344-PNsxezWU8Hex8S8mIyYH4ZRYdoKzlOXd-0-b81d692968cf84008b17ae7819fa2c2f)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1738852344-R0yPnIsRfRvN8NhH37wlEb8NMjtbgkzJ-0-9393e59ec59855f75093de07cf442301)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1738852344-OFHsyDW6aw1HnvHfONfAPKITp6E4jjvq-0-719a0b6c41ddfe194491ff3b54a8a4a9)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1738852344-y3vHk0kGfO5Rq6WZKTuschXKijse1UUU-0-7e1444a1fc76f548ad07acc30eec8b74)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1738852344-gbB0WHttZZsUvzWkbz7rtLC7qcICJsiu-0-7b4148e599d18d37a7859ddeba46fca7)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1738852344-HB07Hv24dfqQ0E1yI24j3xI6Brvjs4sA-0-a9a0a026ee0471c4c088e40f85f9499a)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1738852344-riJ8WkPsEfPU3riZGdOtKD0Tb9MM7IAY-0-6a9c986e3f189ddeacc8d8141696d707)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1738852344-YayyrLwLos3aPLFB2sE3zIIsmR8EvRxI-0-f5f3a66d85270ec440f51ffb8d592791)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1738852344-NOfZtP7FcEPHf2W0HQ7lxz7QlSFSX77X-0-f6bcdf8be548bd87a3281de4c0517ca9)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)