![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
2.2 课后习题详解
2.1 设粒子限制在矩形匣子中运动,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image196.jpg?sign=1738864133-ly4lcaflp19LhD7QgrTd90RUiH6IH8ek-0-6d8ab028d88cd86ffa730709bd44f14a)
求粒子的能量本征值和本征波函数,如a=b=c,讨论能级的简并度。
解:在匣子内
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image197.jpg?sign=1738864133-ZBlPmRSTYnqRpPayz3q7tHZyGnIgz543-0-4a93f8dd021a29718ac5b985cb1cca96)
即其中
采用直角坐标系,方程的解可以分离变量。
再考虑到边条件能量本征函数可表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image201.jpg?sign=1738864133-UrXwQJb1Pkcvq60cmMg5YPp1TAY0wXok-0-7c190089564a98ba4eab7b8acf897304)
再考虑到可以求出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image203.jpg?sign=1738864133-LWz7luvhu1Bt33nJmONCwa8ksWicJqM3-0-41e041e55c41b37b988c5c0b4c690ec5)
粒子的能量本征值为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image204.jpg?sign=1738864133-xOXA1n2HFneNCo7wezov4H8Ic21nADAw-0-933ef3d6d7371af4c71238f7f1222f6d)
而归一化的能量本征函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image205.jpg?sign=1738864133-LGuYRX2s6yupEk0cN90iTh8ITlVSV8jw-0-37471585996c647195e51d45e50ac14d)
对于方匣子a=b=c,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image206.jpg?sign=1738864133-1jtRfDR8ehMjMEU2R7oQ7BG5MTAdXKkH-0-42d2fa3357957ee814206c22182056a5)
能级的简并度为满足条件的正整数
解的个数。
【参阅:《量子力学》,卷Ⅱ,PP.420~421,练习2】
2.2 设粒子处于一维无限深方势阱中,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image209.jpg?sign=1738864133-UAV8FNYvAbwgNvndsvyPsY2GI7uDS9vD-0-54a4a995d28b3d196e95673820448cf1)
证明处于能量本征态的粒子,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image211.jpg?sign=1738864133-gSzz8iGHMBtrhMn6QLeGKriGG0GtLuc7-0-4ac7069a524bd09aa5731fc4c14151ab)
讨论的情况,并与经典力学计算结果比较.
证明:设粒子处于第n个本征态,其本征函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image213.jpg?sign=1738864133-B0EqUOD4MBiqMOBlsiEQkqIfyb2dQbLi-0-a72720d22f0eb56704f90543724414af)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image214.jpg?sign=1738864133-v71gZWN2Q29ocgfhN53CovP4RA6Zr8oH-0-1009b21fefb3bb6634c44af4901b3b65)
在经典情况下,在区域(0,a)中粒子处于dx范围中的概率为,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image216.jpg?sign=1738864133-8dlfvRdhKsBIYns8PZJqrnM8ciNY3lCP-0-38795fcf39b640a541f08c7ce267de1c)
当,量子力学的结果与经典力学计算值一致.
2.3 设粒子处于一维无限深方势阱中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image218.jpg?sign=1738864133-VJfeiRar2vvlwgZ1QxZ1ERRjUkNh8Tql-0-1950f51370828359188bccefa108f3b4)
处于基态(n=1,见2.2节式(12)),求粒子的动量分布.
解:基态波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image219.jpg?sign=1738864133-6n138CtXf09QcfW4hbjyUOfjWQwneE2m-0-3fc6c4ecccfba50730abc5bfd65f6242)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image220.jpg?sign=1738864133-kOymxb0Cs89CtsufsWLdurD6LDoGN2AP-0-ce2e16f82fcf9683c5e955e1e42948d7)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image221.jpg?sign=1738864133-VR3DlmOYVCjHNCu7zBmlspGAUkQAgf71-0-6460882b07e76bf72104ffd801b78cee)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image222.jpg?sign=1738864133-tqnT5nT6qdNp9Z20vFrgWTu61OoGfIzz-0-bebddee91c7ae4afbf2ad61032724490)
测量粒子的动量的概率分布为。
【参阅:《量子力学》,卷I,PP.87~88,练习4和练习5】
2.4 设粒子处于无限深方势阱中,粒子波函数为
A为归一化常数,(a)求A;(b)求测得粒子处于能量本征态
的概率
特别是
作图,比较
与
曲线.从
来说明两条曲线非常相似,即
几乎与基态
完全相同,
解:(a)根据归一化条件
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image234.jpg?sign=1738864133-tArfQrXHsukSLe9ulkCPPUBOio2H7mr3-0-7a70d557ab6951d41f3a61a03235fa1b)
可得,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image236.jpg?sign=1738864133-Ta10UkEshpZT7H6NJ9umhGhP6W50tiOM-0-cd6d2a447f350e3841fc95a611a54091)
(b)用
展开,
,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image240.jpg?sign=1738864133-uQHHPCMrFgbdlPRrv1XRahcm6GF4HWob-0-de7e89dec58b07c1d1d824c7aba5fd70)
只当n=1,3,5,…时,才不为0,特别是
,非常接近于1.考虑到归一化条件,
,可知
概率几乎为0,即
与
概率几乎完全相同.
(c)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image247.jpg?sign=1738864133-JFCUdNDc9eUg5F2OuHMszx4LsnzA3mWI-0-8d37d36f5da20a96aaeafae227c085cd)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image248.jpg?sign=1738864133-jNZvjmQwHDJ9JKmiCBbRfqMgz2L3JgJF-0-0909eddc7d6085360b5a66b30dcb89e8)
2.5 同上题,设粒子处于基态(n=1),.设t=0时刻阱宽突然变为2a,粒子波函数来不及改变,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image252.jpg?sign=1738864133-tWXalDeiFpM8q5h6bj8wLdu29HRLqf7y-0-e2fb414dc4d5dc54536aa42b5f9dda15)
试问:对于加宽了的无限深方势阱
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image253.jpg?sign=1738864133-odu6nmNzSyxqhuV4rCk2nfQVWMC48gXe-0-b3b139ace8c6ec4d9e123adfddf08889)
是否还是能量本征态?求测得粒子处于能量本征值
的概率.
解:对于加宽了的无限深方势阱,能量本征值和能量本征态分别为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image256.jpg?sign=1738864133-hxky1hW7qsGDfP4In6WlD8ZxOMVQVE9q-0-0afaae4e74275b792615e5f08e5cc075)
可见不再是它的能量本征态,.由于势阱突然变宽,粒子波函数和能量来不及改变,粒子能量仍保持为
,而
可以按
展开,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image261.jpg?sign=1738864133-USgL5oyHQxz2hrXKtDO5AQKDIlJB79Vs-0-22fcc648b31c6dbd4d76c7662a206e20)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image262.jpg?sign=1738864133-i7afMD4ZUE2vGpdSwKuSzbFiiKJGPmIa-0-36a4d59e8684f84ec2375801655e6d00)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image263.jpg?sign=1738864133-Gb5Q4anKzKNxVzQcaa7ogiUS7JHxU8yL-0-e4a87f2c040a58f861e8083a5c15fd8c)
经过计算可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image264.jpg?sign=1738864133-w7Leapx9W0bkX1yg0BW9uVTuJKfsAvYk-0-dc5bb6e92d985b029989bb3ddad74268)
所以粒子处于,即能量仍为
的概率为
.
2.6 设粒子(能量E>0)从左入射,碰到下图所示的势阱,求透射系数与反射系数.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image268.jpg?sign=1738864133-4NfXsHMnDfLvuu5NL7wTquLy29hi1dcb-0-9935301a5546384625ab8d6b7ab41da0)
答:考虑上图所示势阱中粒子,可证明粒子碰到侧壁的透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image269.jpg?sign=1738864133-brQrfMQEyGESLtQGIGvLv336zbEMgQU3-0-3513be211801b33a5fc4e585b7ed7b5e)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image270.jpg?sign=1738864133-ftxuZo4EmkKeORfy79j1Ut8vMW682274-0-99a1bf1bb31a7ce85475c4a9086591ab)
反射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image271.jpg?sign=1738864133-ihCOjSXMuU6LFZz3dXqkc0CyBmkfmS8B-0-295ed543673605b6097ff378b978724a)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image272.jpg?sign=1738864133-jvoH84k5Wth7E7oHUifrawY8GG7I7JSW-0-b30a701a6c2eb640b9e9f3f55ff28bf7)
不难验证概率守恒关系式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image273.jpg?sign=1738864133-ImdaiyRkG8iRl4tr9ogcn4eqBrLUY5BV-0-df473aa4ffce17f9e60a2204ec19a272)
【参见《量子力学》卷I,108页,有详细解答.】
2.7 利用Hermite多项式的递推关系(附录A3,式(13)),证明谐振子波函数满足下列关系:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image274.jpg?sign=1738864133-HKgK4AA7BEvqZwfcBBoog3ATfU2miUEl-0-b9f92fece795ac8fc6aedec1bdcf7f8a)
并由此证明,在态下
证明:已知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image277.jpg?sign=1738864133-G0QdXAlJkj6e3EFlkYKGz47sR9BaFIEo-0-5bfdbf97f2b5702ef85898176591226a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image278.jpg?sign=1738864133-4kRl28NctnkYVF8tqjGW0d3UTswZGxlx-0-f25e6c2ae0d0d4753684ff4196563740)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image279.jpg?sign=1738864133-WMjFcXnWDrnJHbdYtDJRcJzhjKtTzQYV-0-29186e3fd031b5fc1952a8ade9642447)
利用本征函数的正交性,可得.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image281.jpg?sign=1738864133-lTVIaDwJhFbo14a4XzbWqK2gmgitACik-0-5e69f6f02ba8a53f46bf27a3491cff47)
同样,利用本征函数的正交归一性,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image282.jpg?sign=1738864133-zUE9Ys4osM2m9Rd7odcFK01wQE53ZTnk-0-26b101d3d439df4e700b408524e2c45e)
2.8 同上题,利用Hermite多项式的求导公式(附录A3,式(14)),证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image283.jpg?sign=1738864133-jS4doDiBetTAcjIQhZ8l1OkCd4O1NBFx-0-bd93dde1f74c2d9209ba79483e268c6f)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image284.jpg?sign=1738864133-xWT4R4019MsiaIYJaWmgaIlFt9mLqumo-0-bf549f6093e9594feef4423f381622fd)
并由此证明,在态下
.
证明:利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image287.jpg?sign=1738864133-CPVSXmLlRkPqh8zWlvS9RmfUpRdVq0pn-0-1c550e0e50de73c477a60a0281ea78d3)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image288.jpg?sign=1738864133-VvfpNrQOAxxdVifAWi114czr7bNVvzIb-0-8d3d79063d3146c24b2eb6f681513bed)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image289.jpg?sign=1738864133-xVaKx4totKiBnxqtohlZ1czj9B4pcUsu-0-7cf964db03053f64bfb1368b52423594)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image290.jpg?sign=1738864133-BbkeSGbrmrDY6aplHDdku6Mrpd8Pj8T3-0-c5b96ff63e880dcd952f4e96d2cf8752)
利用本征函数的正交性归一性,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image292.jpg?sign=1738864133-GFu4KrnPg7Pstysut19rirLl1ECteoTn-0-48bbfe8595e17afd864172045c22f4f2)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image293.jpg?sign=1738864133-BIRNbkd72z0nIayCZrJdzNWY8VSwKO6c-0-d772b7a65ba5080a8cab9dd40340f50b)
类似,利用本征函数的正交归一性,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image294.jpg?sign=1738864133-vgyaW3OhiUdqpd7oSFQ0YJwJrbjIJqWB-0-f9193421c1ccbb53d6bf168576aeb819)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image295.jpg?sign=1738864133-TYIsBoYIJ7VtcvUijU4yBGK1RlOwqRxX-0-c8462977b46b51351eb5fca6f9f427a9)
2.9 谐振子处于态下,计算
.
解:按2.7题,在态下
,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image300.jpg?sign=1738864133-0U5TVX4taUkdqsOa9aX7KsMJszbL4peV-0-73a04513458f07da899702a98a31977d)
按2.8题,在态下
,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image303.jpg?sign=1738864133-1yFWqbQrWycAZFHyjZ2F9KECIPJg1tmJ-0-77368e3854cb04c840bbdffcc2fe8835)
因而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image304.jpg?sign=1738864133-NWb4E46qqhZfhd0Q3ikZhBqVY4t4UayV-0-9da017fc118831724f77a07b77617eca)
2.10 荷电a的谐振子,受到外电场的作用,
,求能量本征值和本征函数.(提示:对V(x)进行配方,
相当于谐振子势的平衡点不在x=0,而在
点)。
【解答参见《量子力学习题精选与剖析》[上],74页,3.7题】
3.7 电荷为q的自由谐振子,能量算符为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image310.jpg?sign=1738864133-jy0oUACRxepAS813mpw4MjvDmuk0Vsno-0-b9270d7b4b4aff92034037eb5742bc42)
式(2)中势能项可以写成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image323.jpg?sign=1738864133-SHRafxn0YqVTUnoJ3w0LzLhov4G5HmCR-0-90f67d272d9a6f08e55b4c08f6f5b2d8)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image324.jpg?sign=1738864133-S5WEjY25eda6NJdmUcXjrGyOoeX4Q3Wa-0-9f9bc3351abc069f934d3c482cc546c2)
如作坐标平移,令
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image325.jpg?sign=1738864133-13qzkbpxbzf0s0FIEmUWLQiZuzdjHkb2-0-235fb86cd5f8b36808b2ac5573187068)
由于
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image326.jpg?sign=1738864133-Q8EBQr2ehdNnvrIP189mSLQt9pAz88xv-0-53366c7e37153db2a85d39623029d925)
H可以表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image327.jpg?sign=1738864133-01m3VyK3YflzIjg4wYu6REudgp79X85H-0-67c1028c1b04c378499c568aac043f79)
比较式(1)和(6),易见H和H0的差别在于变量由x换成x’,并添加了常数项,由此可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image329.jpg?sign=1738864133-bonxSnG0NpMGyr2prPhjxJokezxFCaHA-0-6eb536db16ad85c79909d7e071b521dc)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image330.jpg?sign=1738864133-CuqIDfqAWOoddo39kxutFEZAnoBPCw2q-0-5e2d8c616c09028f09fa687ceebce353)
如所周知,自由振子的能级为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image331.jpg?sign=1738864133-8KO3qbIqu0ZckgNxrwmyOvgp7RRBBXLL-0-aef165512f18e358bd04bb19eaaaeb5e)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image332.jpg?sign=1738864133-duf4oPyHAMUQce3hglPtMv3ojNAeSK3C-0-f34ad9deb4fd4acdee18d047d9c652f1)
如引入坐标平移算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image333.jpg?sign=1738864133-BMkNIsRBa8KrhpyYy1ArlvYkFPmVA09G-0-1965ad402f43c3ebb8a28964842132c9)
它对波函数的作用是
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image334.jpg?sign=1738864133-HHr4uo8qxyRfaN2FyBXAQguBZpwBi4UE-0-5b608469b9e3635dabdc2a9cec3a4be0)
则H和H0的本征函数可用平移算符联系起来:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image335.jpg?sign=1738864133-C1HGyPZbAKqNJRAlFFxIaXStW5WEGymk-0-9a77e7c0dac7c2a9649a99a8f62eb34f)
反之,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image336.jpg?sign=1738864133-fFqdUxgeqfYnWDFnT0jxqS24XWyIhWBP-0-7210ab1c806f77d1631983020457d04d)
解二:利用自由振子的升、降算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image337.jpg?sign=1738864133-dydVYOANVFNPNBqbkzcv3V7cgbG4JIve-0-98ad03bc75e5fc7bd4cfedf45c5e567e)
将H0及H表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image338.jpg?sign=1738864133-PyvLoQxsvQ10BW7fgfPg0LR3AMRl2KeB-0-5e390e82c7eafbca40112e51eef86bf4)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image339.jpg?sign=1738864133-buFa03JeNzXdeY25yrUqEUxy7B5bIVKz-0-81b56c6e522c8cacdf3c39a90a27e756)
引入
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image340.jpg?sign=1738864133-36CMeEgEHkQHJlYCcGaoEVI4VwrfKu8B-0-2e45b9231987a394f7764ffde9ee6f5a)
则
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image341.jpg?sign=1738864133-uqcnGb9JvLfkhtDVOiVadchNgGsfcJNR-0-c2b5175572652d12c38ddb27b5c2768a)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image342.jpg?sign=1738864133-xkaW71Wu9KVJuWY5Gb0lgXw5blnlWLOK-0-8402f4f6eb00aa80138519e9fc3d6fa5)
比较式(14)、(16),H和H0的差别在于,以及添加了常数项
在题3.1中,从基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image345.jpg?sign=1738864133-D8kFhq8jreoHH5zH0Rc3kHbDrQhal85w-0-04e167ac0624a1a0e9858604c2f01799)
出发,证明了能级公式(9)以及本征态之间的递推关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image346.jpg?sign=1738864133-0NGtZc01VqpEZBYVJDIw2ttWyA7WfrVT-0-a4e37173832f3a245f052d1a747e0a13)
并得出了基态波函数满足的方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image347.jpg?sign=1738864133-IMkadgpMIPulyiN0URJbTUoXFKXjb2Zl-0-d00bc175f522a88e4a93fd5a310f4270)
由于
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image348.jpg?sign=1738864133-e8KAny4tLJL4z5AP044eaa8Q9IUSpfi2-0-913d7359652d5c7ff661413ff392d5fd)
所以用同样的逻辑推理也可得出H的本征值和本征函数的类似结论,只需在整个推导过程中用代替a,用
代替
的本征值显然就是式(10).本征函数的递推关系及基态方程则是
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image352.jpg?sign=1738864133-KTvCtSsB9x0Q3ew4n7qE99ke8fYIfCqQ-0-c25f914f27a83f913581d010fb93bda3)
等价于
,因此将
中x换成
,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image357.jpg?sign=1738864133-9Ad8Ypa5EM9FvCFUvjXaZfQrGzxQrLI6-0-a5598221ae978e3e3016e93232a194a9)
和
可以通过算符
联系起来:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image361.jpg?sign=1738864133-tPxHZ2iVxA7kwUwRFE0UztRIgJ17KIux-0-e90595ba9901f6dcaaf1490318b74780)
2.11 设粒子在下列势阱中运动,求粒子的能级,
解:Schrodinger方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image363.jpg?sign=1738864133-FXhfX6CNWjcjs1C66qNP0pKrSZCU0TYC-0-ddb56c612c939cb393dc777519bff3f5)
此即Hermite多项式所满足的微分方程,但要求满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image365.jpg?sign=1738864133-7Cqg0MKV0PBVDKE54fh8NSC8OetzSPRn-0-eb640788ef2a4f935e723333ae172605)
要保证则必须
(见《量子力学教程》,49页,(11)式),方程(1)的解为
,
为归一化常数),相应能量本征值为
但根据x=0点的边界条件
只能取奇数
因此能量本征值只能取
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image373.jpg?sign=1738864133-ARjl98XJvvJZheP42sXcEdByxVFbnzfC-0-1da8942de4686a2b92de4249775aa1d4)
即只包含《量子力学教程》2.4节中给出的谐振子解中的奇宇称解,对于奇宇称解,自动保证
.
2.12 一维无限深方势阱中的粒子,设初始时刻(t=0)处于与
分别为基态和第一激发态,求
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image379.jpg?sign=1738864133-GN6cuaNNVZaSV4jHDscAdRWJ9gDlV32J-0-3cb57ef599855b5ba73cce1dab1cfe5b)
(b)能量平均值;
(c)能量平方平均值;
(d)能量的涨落
(e)体系的特征时间计算
解:(a)按《量子力学教程》21页上的讨论(见21页,(34)式和(37)式).可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image385.jpg?sign=1738864133-tUX8idHRf3mSMD65uaZC8amB74aWZWJk-0-c4e2ebe98fd3c36eaf46b3777286f7d0)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image386.jpg?sign=1738864133-ewO3ffOx4cVVqKt49LsLzS1yVFMiUzY3-0-371157b812a03942b5ba3f281ab4bb38)
(b)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image387.jpg?sign=1738864133-65z4Po1A119WSz6BcFNHgfKyaqEb5a5d-0-525621ca50db1c1557398e178a66089c)
(c)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image388.jpg?sign=1738864133-Tr6MVBcIqbTgMUrNi33z0lmYKUSSSSR3-0-2d19c58f8ed8a65bdba4650f0e4c8b2b)
(d)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image389.jpg?sign=1738864133-lbfVTbOaDw1AyJ2sjzLzguIeShWmHbMt-0-2a0bbfa1670a93fddb86145a40468b3d)
(e)由
可以求出周期τ
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image392.jpg?sign=1738864133-67gxF9WpmhrsnpKhwevXfCnJfKeiwI3X-0-3c3e7091da04e4435abd93ef3f155458)
特征时间
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image393.jpg?sign=1738864133-lK8ugEKVJZaIxKgYsXOjBUDkrcEtsaDv-0-44a6bdd8ed2903739ef2178065674e99)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image394.jpg?sign=1738864133-VsZojJujnhCvOiYawXNWXRPyn9OTaFjY-0-0481fcc7b7b06192182df4107152b29e)
2.13 设粒子处于半壁无限高的势场中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image395.jpg?sign=1738864133-GFmCDaQTKVtp3kXOvGh2bLfIAsdi9MUK-0-707cc8a4c71b81a40d3fe9025cd0d264)
求粒子能量本征值,以及至少存在一条束缚能级的条件.
【解答参见《量子力学》,卷1,94~97页,例1,有详细解答.】
*例1 半壁无限高的势垒(下图)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image396.jpg?sign=1738864133-CUCTBHKXrWn78UEieBEVWmF0e3yYOKHG-0-c95dc364f7f8f1f6d7d70238885851ee)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image390.jpg?sign=1738864133-IBj6kmiZ0rIih2w3og4sEux2MmKG59ck-0-0a3827dbc1fc55713181ec96040a00ff)
考虑一情况,分三个区域讨论:
①z<0区域有
②0<x<a区域有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image400.jpg?sign=1738864133-p5xGzCyL5dG5oEQjfs2vXUB6DI2Y58tb-0-25b4c54c1c2c8db5bc99fecf5c81453e)
利用的边条件,可知
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image403.jpg?sign=1738864133-kII1jFi25BgrioZRTQQxCiIYp7Dh8T2b-0-e5cb003b744185a9918e463dff99e673)
③x>a区域,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image404.jpg?sign=1738864133-tLMylwLjeIFzxkNHbXqBOrfiKvp8Ur1I-0-0a57217a2c5d119975da4d68fffd1aac)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image405.jpg?sign=1738864133-7MOTMI4RKd7zqJjkkZDMYiZ96QF387J0-0-5edbbe727aed4ad7033d392183607628)
考虑到处,要求
为0的边界条件,只能取
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image408.jpg?sign=1738864133-ADNeM2F1mH07TyVrJVIO940wxD5vVtZg-0-044d75451d6392d14067af8752fa9545)
然后根据x=a处的连续条件,可求出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image410.jpg?sign=1738864133-3WbwpkqIDjE9uN5Z6R2kKkf5q1Ow9pcO-0-65932775829c0a22af3dc1f899c424ad)
[试与式(34)比较],上式可改写成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image411.jpg?sign=1738864133-4nmirtS1CeDFVJgDmrDeehEx3mq3SQKE-0-7e8b01fcda993b9f0e72a1689680114f)
所以ka处在第Ⅱ,Ⅳ象限中.上式还可改为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image412.jpg?sign=1738864133-zj7CXe0q0D7NiiHRUmgkgC9VeOodKEQT-0-189267d7e812db7123fac0b7c561709b)
其中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image413.jpg?sign=1738864133-YHQr4k1aGMO3LfdOjCWv9tkclfJuDHu4-0-b6b39c395e6800bf8b78139250defcb2)
用图解法可以近似求出方程(47)的根.下图是有5个根的情况,这5个根是y=的交点(交点在Ⅱ,Ⅳ象限中者).
当,即无限深方势阱情况,直线
变成y=0(横轴),它与
的交点(在Ⅱ,Ⅳ象限中者)为
ka=nπ,n=1,2,3,…
与式(6)完全一致.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image418.jpg?sign=1738864133-EDgYZdTcZMwYgOKjxUp1jEuNBlw8hPRq-0-2246827e4b7a9e64af57358b9af3feaf)
与对称势阱不同,半壁无限深势阱中的粒子,并不一定存在束缚态,而至少有一个束缚态存在的充要条件为:在ka=π/2处,y=ka/k#0a≤l,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image419.jpg?sign=1738864133-2nDv0vmp3ZhwBmUFQQ8nRXtDULuGdzEV-0-5f3d2c74eac4d9d81d3660e53b378ca1)
或
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image420.jpg?sign=1738864133-lsiQDOXrypit9A25k5GZzK1EaviZLs3Q-0-bd0425340ea667a1298e6a745ed1947c)
上式平方,利用式(48),得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image421.jpg?sign=1738864133-3bD4ayJQjp6xu0JG6ub1ocoRQUrnGZFp-0-0ee7707bc60523e61a9662e4d9f0f3c3)
这是对势阱的深度V0及宽度a的限制.
2.14 求不对称势阱(见下图)中粒子的能量本征值.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image422.jpg?sign=1738864133-30gg3lVbEpWEKutfHF6iMs3X1E7x5Ffl-0-dc59750631ff862270757d6a1c1826df)
解:(以下限于)讨论离散能级,即情况,这时,Schrodinger方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image424.jpg?sign=1738864133-9l1oEmQqkKPDQKd5N5IY774d2rOCJnHH-0-29d325eb333576e4378eb0b76deafd62)
考虑到束缚态的边条件
可表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image427.jpg?sign=1738864133-XrTBWLXd7soORFx6HznC6AIzYXwsDXBV-0-bbd700ace0668f2dad21eddabc3fcec4)
由在x=0和a处的连续条件,得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image429.jpg?sign=1738864133-CnE7zF3XOJXtYcKNgho1xtwLEUBBRycz-0-fc83afb70a3eb2d5962b89e07fcfd40b)
(1)式等价于
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image430.jpg?sign=1738864133-gHSz9uxxm36CQLUWVzvGf7n7XdeI7xqr-0-c2e2229b391d303d31498229ebdca5a5)
从(2)式中的两式消去得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image432.jpg?sign=1738864133-pdEiGWH5hCrfQug8Kzjwf1I1o293BcZq-0-b70695fb55725a53ff0385c9396345f7)
当时,并不是任何条件下都有束缚态,由(3)式可知,仅当
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image434.jpg?sign=1738864133-O4cZ9A7mbf9NXku1XvdO9iZZxmr2WUCe-0-c6b92a54801cfaa4b1c8bdd939857cab)
时才有束缚态解.如能从(3)式求出k的可能取值则相应的能量本征值为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image436.jpg?sign=1738864133-z5t1elJnoZpoccKvEksgfB4fFUxKbO7y-0-b8af7b4045cb3c636f25e43c34b5df2e)
【此题的详细讨论和解答,可以参阅Landau & Lifashitz,Quantum Mechanics,Non—relativistic Theory,§22,pp65~66】
2.15 设谐振子初态为与基态相同的Gauss波包,但波包中心不在x=0点,而是在点,
(1)计算
(2)讨论波包中心的运动规律,与经典谐振子比较,考虑波包形状(波包宽度Ax)是否随时间改变?试与自由粒子的Gauss波包随时间的演化比较.
【此题的详细讨论和解答可以在《量子力学》,卷Ⅱ,128~131页中找到.】
答:设处于谐振子势中的粒子在初始时刻(t=0)状态为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image441.jpg?sign=1738864133-1fl0SQBJiMaHwOiIvJpTJgVQ1vX5Bft2-0-2c8007f036116dff733f4d2ae9a45845)
即波形与基态波函数θ#0(X)相同,但波包中心不在谐振势的平衡点(X=0),而在X=X#0点.从经典力学观点来看,粒子将围绕平衡点振动.从量子力学来看,这个态就不可能是一个定态(处于定态的粒子,其空间分布概率密度不随时间改变).事实上,它既不再是基态,也不是任何一个能量本征态,而是无限多个能量本征态按一定的权重的相干叠加,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image442.jpg?sign=1738864133-kA6TuJxOl7YJLPjbvaQQEylqsHM8J78y-0-ad2a697c171ea1d57e1179470a41be31)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image443.jpg?sign=1738864133-vBjFScZUNXq6Hew66IMPAzsfOrE615ir-0-be96e64ab73070a51cb6e33cf8950bfb)
即
的能量本征态.可以证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image446.jpg?sign=1738864133-ub2HhnW3eFdipj0Dd98XG9p9Q6wu3s5g-0-093945bde649fbb6f36b8945e70664e1)
更简单的计算方法是用代数方法,即用平移算符作用于基态波函数θ0(x)而得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image447.jpg?sign=1738864133-ipoGiMGgg2FIhQrNELsAKM0R0w6iRHQO-0-a919a3b37b020edc96f453422c414bef)
利用谐振子的升降算符
可以表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image450.jpg?sign=1738864133-20SQBxj2O2rPKlySITx5yUUZAVQgch8i-0-26a788e3a684719af7a07c347f77bfe5)
于是(无量纲).利用代数恒等式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image452.jpg?sign=1738864133-WdZsKP2efN9ZnB75aRxOvbjtPwXdfolB-0-48318128e2798231e84e2eb22cd51f20)
式中C=[A,B],并假定[A,C]=[B,C]=0.按照,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image454.jpg?sign=1738864133-gHZF4F2JkzMzSHKj9uFSzhZpgF9ncoYM-0-d16f5272aae66f35b90b185fe3ea1fcf)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image455.jpg?sign=1738864133-KGQ9uD6R4M5fyC3uyhaPKxXwPtwMLKl2-0-6c515bb2cb87697a7f7f5fdded18e93b)
与式(3)一致。
按式(2)、(3)及,可得出t时刻的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image457.jpg?sign=1738864133-pod6Jk8MRm9UnCiVo6qYL4issGMzopND-0-97281d92cc2a5b5c8d6ed8bd40caa370)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image458.jpg?sign=1738864133-YyL11ONQo4lR7Ia0vy1hIEllbhBmDsPc-0-b3a5ca4e8162e8f1f232123a2d530177)
与
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image459.jpg?sign=1738864133-cle0OBtPxDYF3mtAsEwyLqwJA6Gl8Igl-0-e20a9964b70614fa56e2a62f5619de52)
相比,可见是一个围绕x=0点振荡的Gauss波包,波形不变(波包不扩散),波包中心位置在
处.与经典振子(初位置在X=x#0处)的振动规律完全相同.所以相干态是一个最理想的准经典态.
2.16 对于一维粒子,证明:使坐标与动量不确定度之积取最小值的波包必为Gauss型波包
。
【详细证明见,L.I.Schiff,Quantum Mechanics,(第3版)61~62页.】