![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
1.2 课后习题详解
1.1 设质量为m的粒子在势场V(r)中运动。
(a)证明粒子的能量平均值为,式中
(能量密度)
(b)证明能量守恒公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image043.jpg?sign=1738864827-6eq1Gh2Mx27vFWNUbelQG5TpyZ7CKb0q-0-49302f965521bb822c38ca0766304ce5)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image044.jpg?sign=1738864827-yS0Rec0Lw00eWNm9UVzZkMZU4WKLdQ6y-0-46cf16fc793b40fb6f0dd96aba4c6b95)
(势能平均值)
(动能平均值)
其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image049.jpg?sign=1738864827-2jvkwCtTRAKLk3ktKJJ6lF1jiKsCJr9H-0-c23936eceaaaea1bfc218cc351d9ee94)
(b)按能量密度W和能流密度s的定义
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image050.jpg?sign=1738864827-ZmntYWhSba7ULjxVJigBj8XaCOSlqhCs-0-0f01b3274977dd11e8244c70afb1e373)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image052.jpg?sign=1738864827-QJcim36gA6YYHww3CQZe5pK0hw6xJ0Qo-0-7478aebf4431cf7da2b24b2fcff62c01)
1.2 考虑单粒子的Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image053.jpg?sign=1738864827-Da4GPvQ6fQO8IaFVC3SQqjUbVndYAaRa-0-ae9aa04efa8f7518e9339ef8f896dd58)
V1与V2为实函数.
(a)证明粒子的概率(粒子数)不守恒;
(b)证明粒子在空间体积τ内的概率随时间的变化为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image054.jpg?sign=1738864827-1TC3RU0jOFO3aZcmPi4GhFlkg7ittnPs-0-8b411ffc780689f36b61d48b90d9fa47)
证明:由Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image055.jpg?sign=1738864827-6srFdt94E2BPFW0OcZaHniniA5kEwnpO-0-408e5189637295f62b17bdc95953ae2c)
取复共轭
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image056.jpg?sign=1738864827-fPtKzyKU3t0OFwhbZza5VrV1E55pLVyQ-0-eed8629b90cbc868054c3893de174d7a)
得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image058.jpg?sign=1738864827-OSWWXLMYSCJyoEbWbN1Himnafm7yvajz-0-f26a86db7887666de7f9f02303f6ed6d)
积分,利用Stokes定理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image059.jpg?sign=1738864827-hc39uC0c5EKxQXnNC34vd7FfueIdKLa5-0-f19694b464551b7004e4a4a2dfec6b72)
对于可归一化波函数,当,上式第一项(面积分)为0,而
,所以
不为0,即粒子数不守恒.
1.3 对于一维自由粒子
(a)设波函数为,试用Hamilton算符
对
运算,验证
;说明动量本征态
是Hamilton量(能量)本征态,能量本征值为
(b)设粒子在初始(t=0)时刻,求
(c)设波函数为,可以看成无穷多个平面波
的叠加,即无穷多个动量本征态
的叠加,试问
是否是能量本征态?
(d)设粒子在t=0时刻,求
.
解:(a)容易计算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image077.jpg?sign=1738864827-1tbKU4Vaq1FpmR5o2OKgOTxHxp6iShLF-0-c3bc1cb631e7af033f649accf3f5625a)
所以动量本征态量(能量)的本征态,能量本征值为
.
(b)其Fourier变换为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image081.jpg?sign=1738864827-s4WbDv2VAcHMeMGQKwicBBX1UilIRSRP-0-639751d7e6f0984eb4096d750221e7cd)
由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image082.jpg?sign=1738864827-nleSR3i7nD0uQr7X9wsDho6ZUVJPEnpK-0-7d75e569736730b58ac59adadaad0aed)
(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态
的叠加,所以
不是能量本征态.
(d)因为,按《量子力学教程》1.2节,(5)式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image087.jpg?sign=1738864827-j6nYeeLyO7hJgnpxDex8RSUVI4u4itWh-0-da0116ebda72cf46ec9005ccf25d2c64)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image088.jpg?sign=1738864827-ZbUel2czReFo1NTOmYR7cbiduuZ2q8DB-0-483969600421e5e1651a6223ed413672)
计算中利用了积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image089.jpg?sign=1738864827-EWik8JFCYbw8lArK8IKvAfeYfdSjCxh1-0-d003f8e7f506313a10362d48cd7283e6)
1.4 设一维自由粒子的初态为一个Gauss波包
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image092.jpg?sign=1738864827-VDdXdB8tEFMcYcYkDZZGLrQHySTQAcJd-0-5463dcf5087b062cc6d7b349c2dfe06a)
(1)证明初始时刻,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image094.jpg?sign=1738864827-7wlCE0y4zvN686OAwlMQ0k85lFbjZFTN-0-b8024b385a0f169926dfcc2e541fb430)
(2)计算t时刻的波函数
解:(1)初始时刻
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image095.jpg?sign=1738864827-FVMCpCVvBX5RDMmuvW7YpOUHDLRBqQEz-0-8eed8ac53eca82319269e281b24d1514)
按《量子力学教程》1.2节,(18)式之逆变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image096.jpg?sign=1738864827-A5vXmsa0aWavNUwitdZ68LctDlqAzrx8-0-63370c2c78f206aceed8fdc3a1bcd724)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image097.jpg?sign=1738864827-iHRTxrYqwyUIaSBzJomqMpRzRZLqQNBi-0-ae5dba8e65afea41ef1534effa0faff4)
(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image098.jpg?sign=1738864827-BakEvl546h4TxdebB8A5xVY22EkDQ76i-0-23b0a9ee7fb5fd935015cffbef130963)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image099.jpg?sign=1738864827-ITpbMnRalFBtSTvVITHza6sMOI1Zm8FP-0-c11950d392ede1316c2db3f19baa0a29)
可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.
1.5 设一维自由粒子的初态为,证明在足够长时间后,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image101.jpg?sign=1738864827-ypUTE4j3sQ5w49DiQZ7pGZrALH2tegAS-0-8ad36b54fb111491fc5b2ad430a48c20)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image102.jpg?sign=1738864827-CByTVuQ5NnOEYVD2tARRi2Clyp6mlThH-0-0e8a5da345a6b55c56dbe624cda25743)
是ψ(x,0)的Fourier变换
提示:利用
证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中
所以时刻t的波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image106.jpg?sign=1738864827-wGM8j0DQYSHtZ0jshSkOQqolgoaWTuQ4-0-7c8ab1b92ca111d75358fa111de41d95)
当时间足够长后(t→∞),利用积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image107.jpg?sign=1738864827-adnz9SK2i0139YmX0qBpbKeKfnB13k6n-0-115a23d059b3890086ff5a4ebdcfec67)
上式被积函数中指数函数具有δ函数的性质,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image108.jpg?sign=1738864827-OE9YzCppT7J8hkjOr68q2pvqDVsMFbiA-0-f4ec53ce0f17a6453a654855aa77aa51)
1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image109.jpg?sign=1738864827-A6EQd7hUY80M7BXtQPpeoVbHFrxhiAYx-0-3b5b8746c97f829e6ab40d0ae9f0dfff)
定义粒子的速度分布v
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image110.jpg?sign=1738864827-ifDwEu78ej2FWH3BP2RwQG7xFavPUh97-0-4cf5222160ae6ccb7391668ce5f78b9d)
证明设想v描述一个速度场,则v为一个无旋场.
证明:按照上述v的定义,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image112.jpg?sign=1738864827-DaxDQiw08ID4CoqHYRMh0lV8AyoBxrLo-0-4b4864350b134f390d64a40341628d70)
1.7 处于势场V(r)中的粒子,在坐标表象中的能量本征方程表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image113.jpg?sign=1738864827-6R3k6tYvxWbBhbbZ2nMJs9rYmXziCEzb-0-d1f32ecf10eb3a56e04dc309362e4436)
试在动量表象中写出相应的能量本征方程.
解:利用的Fourier变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image115.jpg?sign=1738864827-Ui2lW4Xp4nzH4dTEc1JeVDMW0Oqa4BQI-0-3c04de2ef715f2dadf66411ba2403c9d)
可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image116.jpg?sign=1738864827-1ZIOhJkEY7KTVtlppyuLHPlK8xAv1Co3-0-392d99d1bcd808e06a4cd11dccb937a0)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image117.jpg?sign=1738864827-MHWqTrU41DYWRizgiroVEXRF0OVwE9Fq-0-e02b04b0ad937c55361a12adf5ec7bbe)
所以在动量表象中相应的能量本征方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image118.jpg?sign=1738864827-NWE9Bm9c7p89AR5N7I2cZ53wqBfKbeJz-0-927d41f3dfe5938e7378936c24f3b9fb)