![计算机视觉特征检测及应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/808/26688808/b_26688808.jpg)
上QQ阅读APP看书,第一时间看更新
4.1 图像梯度与内积能量
4.1.1 图像梯度
真实图像中的噪声通常使用加性高斯噪声来建模[49-50]。如果f(x,y)、fr(x,y)和ξ(x,y)分别表示图像点X(x,y)处的实际灰度值、理想灰度值和噪声,则有:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_01.jpg?sign=1739269052-2BjEZ1SygcJPA9YxVU4eMpDmPBdOVUgB-0-16bf1c2625f7b2871a0617396b4397b5)
式中,ξ服从零均值、σ标准差的高斯分布,即ξ~N(0,σ2)。
记图像点X(x,y)处的梯度为g →(X)=[fx(X),fy(X)]。在数字图像处理中,通常用离散梯度模板计算图像点的梯度,大小为N×N(N=2R+1,R为模板的尺寸)的梯度模板的一般形式为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_02.jpg?sign=1739269052-EEh37yLOfO6Z0UK75URnO63Irlcreobx-0-976c25dd4dcf4e47f6b4aedc5f8b303d)
其中,′表示矩阵转置。
于是,
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_03.jpg?sign=1739269052-XGvGMPyizjut75J2tVNQYvIzgGsvgMNt-0-3163a93dcbb726d4abb4b2b65dd79646)
记:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_04.jpg?sign=1739269052-FCh8XkbsiIx0qXHdt6bTxzSx53xp1AWm-0-cfc02487c73d02586e8289006092ca85)
则式(4-4)和(4-5)可改写为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/62_05.jpg?sign=1739269052-kkLCRd99li7QOUnixvJ2W83j3wmNs7Pk-0-8654d0f141cb964bd595831ad6b10136)
由于ξ(x+i,y),ξ(x-i,y)相互独立,且ξ(x+i,y),ξ(x-i,y)~N(0,σ2)故ξx(X)的数学期望和方差分别为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_01.jpg?sign=1739269052-SqPyCjm6Lonoow4vjeE1icL9gDnlWPNS-0-e429396b678d452b2959848af8d262c9)
同理, ξy(X)的数学期望和方差分别为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_02.jpg?sign=1739269052-cBUoPDcdWiHDs1w3GzA1M08WTBtEmBS9-0-6092e516e6957dddaf97b422b1b9e6a4)
于是,记
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_03.jpg?sign=1739269052-8nB9hDbs72nPHTTxIP28j0njBBMoHUIc-0-f8bfc2fc597194faa3e2f38de2a6fe34)
则有ξx(X),。
4.1.2 内积能量的数学期望与方差
考虑点X(x,y)为中心r为半径的一个圆形区域G(X)={Xi‖Xi-X‖≤r2}内的图像点Xi(xi,yi),记,
分别为点X和Xi处的梯度,点X处的内积能量定义为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_07.jpg?sign=1739269052-oe6uoBLnjlyXVmDLWvNvffE0Ocg34mXU-0-c7fa47141d5371c72a041b706536a6e3)
将
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_08.jpg?sign=1739269052-GKxeUIJGWWmT0mcY30dhRRUO80k1u2a2-0-1b92cba5f3bbca61bfa4e100360d50d6)
带入式(4-17),由内积的线性性质可知:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/63_09.jpg?sign=1739269052-kHxHw45YWCf4UrgnbFZ2csHga0ICASWD-0-04b6a18fc9d173c88ff4e9bb36b8a721)
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_01.jpg?sign=1739269052-qO83ODkGJrHYopnlsrV1eGCwFp1yru9U-0-6480984783d8eed639b4aaecf31d8e3d)
因ξx(X),ξx(Xi),ξy(X),,且相互独立,所以内积能量IP(X)的数学期望为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_03.jpg?sign=1739269052-zTwT5xjYHD042bSRqmCarIP9i2qJR1xe-0-d8ce51b46bd09a9018313cc39afea922)
内积能量IP(X)的方差为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_04.jpg?sign=1739269052-rNJn2HCEmPcKjkrH1nvLjRdTSFu588VJ-0-47b6a7307ba7f39a55c4ebaa9e7433d5)
4.1.3 梯度幅值及其数学期望与方差
为了在下一节比较内积能量和梯度幅值在噪声抑制方面的性能,我们需要计算梯度幅值平方的数学期望与方差。点X(x,y)处的梯度幅值平方为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_05.jpg?sign=1739269052-O18KUm9CHvYNDvv4bVAyobjpBvfYX2uy-0-b9fd01b5549cafe78a5c804e44e97850)
所以,M2(X)的数学期望为:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/64_06.jpg?sign=1739269052-nt4RCXbArdfIHVY237gA9hlhKsu5PUPQ-0-ce151dbe659afa31501be787f3fa8b28)
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_01.jpg?sign=1739269052-tUVHt6QxLlPGy7lUlNG5a0TjBbGiB2sx-0-557251ef22c8886b88c62d660cc4223e)
下面计算M2(X)的方差。由于ξx(X),,从概率论的知识可知:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_03.jpg?sign=1739269052-OR3HSh9iAV7l97CcoDTajdlc2piXRJn9-0-2baf8bfe8a47ad18a4a6f78614f5c124)
根据χ2分布的性质可得:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_04.jpg?sign=1739269052-rFhqlaMAUlmI1auujvrrEp3sHDuQvnaV-0-9f9300a1da1ba1c1b609799a9cf15031)
于是,
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_05.jpg?sign=1739269052-u7KGjvuSv1Hu69ypvTrpuaFEWJFzshea-0-5877c8bf2e21775c91d6c2a75da90921)
因此,我们有:
![](https://epubservercos.yuewen.com/C32AB5/15169318904260306/epubprivate/OEBPS/Images/65_06.jpg?sign=1739269052-8Pijc40oPXUa0tDcXIkXXDEJ4fmTWjQw-0-1ccdca86d67ceecc3725af44dfa29366)