![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8145.jpg?sign=1739423273-2MJ1dIy5Hy6c6dMOU2SAO2lY3sy8KYzB-0-68ef4fb74bf98a2e0944163bdc8056a0)
是两个s×n矩阵,则s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8146.jpg?sign=1739423273-QX736hqogrcRzBGXlR40ejsN96WgVFiK-0-4ea4aad31da325581be12c271e6e49fe)
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8149.jpg?sign=1739423273-Ux4Q0CD5mib2Frc1xS7JL7vW3RUingNP-0-80acc50dd53779de6e7dc9b485d53808)
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8151.jpg?sign=1739423273-ZcAXChJVmcFvxBYQDuIjTcTMx9sYhR0U-0-bc45c518bd48009bdf86f3904edc9094)
B是一个n×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8152.jpg?sign=1739423273-aExuWGd77Jp3T8X9JjpnV1gdVhzYZBPb-0-e835584c15836896e01e5f03f42c7bbd)
作s×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8153.jpg?sign=1739423273-EFeLOU7kg34TlaumNpfEnE4qaWmqmWZ6-0-3d59223d1e4bab35b7e17c328b9cfea2)
其中,
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8154.jpg?sign=1739423273-KdOZvUJfW04fPE9oKMIsM9ObSasMFDzu-0-0e8ae011ba2699b6d4eca0601a60a828)
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8157.jpg?sign=1739423273-GA6DCtJlPf2Idae9szmq2MYA8KXwmX29-0-06f141447e7f3b207d62c8b89ee8391f)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8158.jpg?sign=1739423273-dhfeigI48t8PTicatlpgyhYRocgdlevW-0-8aa00a9c69de95c691ede7a21d38524b)
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8161.jpg?sign=1739423273-MtR0A7AOXJ3o1S6Y79WBeiZA6FJD4Y97-0-8971e4c9c7775d36b38d18fc83b88c16)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8162.jpg?sign=1739423273-Vg56yYVk989lvA5GoN19YruuoKhe58L8-0-90d84821045c564d61b13c5d50cf094d)
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8165.jpg?sign=1739423273-OXbHhV8MzxlpEF5QfErkwYz1bpeRxMnj-0-83ec5f2099ce03e2f9aeff78a8aba9e6)
s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8167.jpg?sign=1739423273-kFPHrAhCmfPr941zLR0s0MIL3PP8tvNG-0-2dce9d48fc416ae25ccecd4dda0f97e4)
称为A的转置矩阵,记作A′。
【手工计算例8】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8168.jpg?sign=1739423273-zAEdvpsicaonhdAJ2kxksqkF7yqwPgS2-0-feabf3a16255abf83d733b068401d03b)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8169.jpg?sign=1739423273-DlAe9PzIMGQioPwlsOnu8iWv5HXn8H7S-0-adb65d9dfb6cb62c316c59c4c38b897e)