![高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/582/26179582/b_26179582.jpg)
上QQ阅读APP看书,第一时间看更新
2.4.2 由参数方程所确定的函数的求导法
设变量x,y之间的函数关系由方程组
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00064012.jpg?sign=1738886595-WabqeRsGHsvQMh5SWUrLKfgHO1kJ5nKJ-0-11244e21df733ee42174b88db186a572)
所确定,则称此函数关系所表示的函数为由参数方程所确定的函数.此时y′x(已知x=φ(t),y=ψ(t)都可导,φ′(t)≠0)的求法为:
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00065001.jpg?sign=1738886595-sKDyixBw6Nh4ZNfpC8PHyE7Pxe3JqkdS-0-4f6e7e5f4e29fd176e662c819b9772fb)
例5 设参数方程求
解 由参数方程的求导公式,得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00065004.jpg?sign=1738886595-D6kl7IXdeXX3iKQOgqlucXNR66otZW19-0-a10e2a1ab635aba3b013ba0b4a847d69)
例6 已知摆线的参数方程为(0≤t≤2π).
(1)求在任何点处的切线的斜率;
(2)求在处的切线方程.
解 (1)摆线在任何点处的切线的斜率为
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00065007.jpg?sign=1738886595-4vDqcrjLKWYFWIgSmCo11gsE5Yp9BcFt-0-ee30e46a29858847e0eaf1c21f4b7228)
(2)当时,摆线上对应的点为
,在此点的切线斜率为
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00065010.jpg?sign=1738886595-P7AXPYYgGQ6UOOBKdUvdodi34Fw8uXTg-0-67c22dbf1b526f4676adc3f39558fbfd)
于是,切线方程为
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00065011.jpg?sign=1738886595-eQNpxRLcuL45BsuT5xoBr5P5icLDT5G3-0-09e5680b081388357d7f51e16993b5bb)
即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00065012.jpg?sign=1738886595-dSEFXdhUyivWs2uLZrCPq8037SJnmTUp-0-2d2be6c836be301759c806743f241ed0)